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Executive Summary

This research project was a research collaboration between the Building Innovation Partnership (BIP)
and the Geospatial Research Institute Toi Hangarau (GRI) at the University of Canterbury, New
Zealand, conducted between December 2020 and August 2023.

Following engagement workshops, the project successfully developed and demonstrated a prototype
digital twin for a site north of Christchurch, New Zealand. The focus the work was to build an
environmental digital twin which brings together computational models of flood inundation with
other data, for hazard assessment, management, and mitigation. A key objective was to enable the
automation of flood risk assessment, such that multiple scenarios can be assessed rapidly, such as
when given updated information. The fundamental design principle was that the digital twin should
broadly adopt the “Findable, Accessible, Interoperable and Reusable” (FAIR) principles, and be open,
extendable, interoperable, replicable, dynamic, versatile and scalable. Research was underpinned by
methods developed in an aligned research programme, Ma te haumaru o0 te wai, led by NIWA, which
is assessing flood risk across New Zealand.

The conceptual design of the digital twin includes geospatial databases to hold the input data,
including static data used for boundary conditions (e.g., LIDAR data, stopbanks, storm water, channel
geometry and land cover), dynamic boundary data used for model water inputs (e.g., river gauge data,
tide levels, rainfall data, design flows), observational data for model comparison (e.g., airborne flood
imagery, SAR flood imagery, survey data) and data for infrastructure and population for impact
assessment (e.g., buildings, census data, roads and rail). A design principle for the digital twin was
that, for a selected area, these data are downloaded from their respective agencies and stored in a
local database without modification (i.e., features are kept intact). A local copy of the data is
maintained to avoid the high bandwidth which may be associated with multiple downloads, as well as
speed up processing when the data are used for multiple analyses. To achieve this, a database of the
metadata is maintained, which tracks areas which have been previously processed, and when.

After download and incorporation into local databases, data are further processed within the digital
twin to create the “GeoFabric”, which refers to the model inputs and boundary conditions, including
the scenarios assessed, in the appropriate model format (in this case, BG-Flood). Dynamic boundary
condition data are obtained which represent flows into the domain and a downstream tide level.
Rainfall and river flow input data are derived statistically from existing databases which have been
generated based on historical observations. For the tide level, by default the annual maximum high
tide for the last year is obtained. To account for sea level rise in the scenarios, differing levels of sea
level can be included on top of the tide level. Climate scenarios can be included in both the rainfall
and sea level. The model is then run, and the digital twin maintains metadata regarding simulations.
Finally, model results are incorporated back into the digital twin for analysis, such as identifying
flooded buildings. To complement the data processing and computational engine, which forms the
foundation of the digital twin, we have developed a web-based visualisation environment based on
the Cesium open platform for 3D geospatial data.

Future work will include additions to the backend functionality such as additional scenarios,
connections to additional data, development of a storm drainage module, integration of machine
learning methods, and a connection to RiskScape. For the frontend, an improved user interface will
be developed alongside dynamic and immersive visualisations. Finally, we will develop a hosted digital
twin solution and seek to scale across New Zealand and, longer term, internationally.
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1 Introduction

Flooding is frequent, widespread, and impactful, regularly causing damage along with disruption to
communities (McDermott, 2022). This is expected to increase with climate change (Arnell & Gosling,
2016). Management of flood risk requires Flood Risk Assessment (FRA) to identify areas which may be
impacted and develop mitigation measures (Alietal., 2016; Bates et al., 2004; Tsakiris, 2014;
Winsemius et al., 2013). In these assessments, geospatial data (e.g., high-accuracy elevation, land use
data) are combined with meteorological and/or hydrological data to create flood inundation scenarios
within hydraulic models of surface water flows. The outputs of these models are then intersected with
additional geospatial data representing assets such as buildings and utilities, or data on population
distribution, enabling the impact of the flood event to be assessed. Despite often being built on open
data, there are barriers to FRAs being developed, accessed and used (Thieken et al., 2006). For
example, the computational modelling and scenario assessments required for the FRAs used for
management and mitigation requires substantial amounts of spatial data related to infrastructure and
the environment, which can make it challenging and expensive, and leading to variability in the level
of detail possible (Glas et al., 2020; Ocio et al., 2016). In this research, our focus has been to test
whether the concept of a “digital twin” can address these critical challenges, and thereby enable
decision-making in flood management by providing a means to rapidly assess flood risk, across wide
areas, for a far greater number of scenarios.

The focus of our work has been to build an environmental digital twin which brings together
computational models of flood inundation with other data, for hazard assessment, management, and
mitigation. A key objective was to enable the automation of flood risk assessment, such that multiple
scenarios can be assessed rapidly, such as when given updated information. The key objectives of the
research were:

1. To assess existing and/or develop new standards and specifications for spatial data of
relevance to flood resilience in urban areas, including but not limited to infrastructure such as
pipes, storm water drainage systems, streamlines, culverts and stopbanks (levees),
topographic data from terrestrial LiDAR, channel bathymetry, land cover and other
infrastructure of relevance such as buildings and roads.

2. To test these standards within an interoperability experiment based on those of the Open
Geospatial Consortium (OGC).

3. To use the specifications to develop a “digital twin” and implement this for automated
generation of flood inundation models for rapid flood risk assessment, based on new methods
of machine learning for automated feature extraction.

4. To test and demonstrate this digital twin for an urban flood event.

The first two objectives were address through two workshops with stakeholders in January 2021 and
January 2022. These workshops are briefly summarised in Section 3, and previously reported. The bulk
of this document is focussed on the final two objectives, and provides details of the approach we have
taken, including the rational and design principles for this. In the Appendices, documentation is
provided for setting up and running the software on a server, including the Application Programming
Interface (API) which is part of the back-end system.
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2 Towards a Flood Resilience Digital Twin

Over the last few years, the development of digital twins has accelerated greatly, especially within the
manufacturing industry (Jones et al., 2020; Semeraro et al., 2021). Numerous definitions of the
concept of a digital twin exist, with definitions tending to vary depending on the field (Fuller et al.,
2020); in general terms, a digital twin is a dynamic virtual representation of a physical system (e.g.,
Madni et al., 2019), with automated data exchange being a key attribute. Digital twins are enabling
the development of the next generation of smart cities (Deren et al., 2021); more recently, the
concept has expanded to include digital twins of the natural environment (Blair, 2021) and there is,
for example, significant investment by the European Union (EU) towards the creation of a digital twin
of Earth, with the aim of ensuring climate neutrality by 2050 (Bauer et al., 2021). The EU’s “Destination
Earth” (DestinE) policy brings together computation and data lakes to create a "seamless fusion of
real-time observations and high resolution predictive modelling” for critical application areas including
extreme events and climate change adaptation (European Commission, 2022).

2.1 Previous work in digital twins in disaster management

The concept of the use of digital twins to improve disaster risk management is a rapidly evolving
concept and is an amalgamation of several aligned technologies (Ariyachandra & Wedawatta, 2023).
Digital twins are becoming widely recognized as an umbrella technology which will, for example,
enable us to improve our resilience to climate change through smart cities (Riaz et al., 2023). Early
examples of the use of the digital twin concept disaster risk assessment includes work by Ford & Wolf
(2020) who demonstrated the linkage of a smart city system with a community simulation model in
order to improve decision making related to evacuation, while accounting for real-time traffic
information. Similarly, Ham & Kim (2020) developed a conceptual framework for the inclusion of
crowd-sourced data in a 3D city model, in order contribute to the development of risk-informed
decision making.

In the area of flood risk assessment, Ghaith et al. (2021) demonstrated a digital twin for Calgary,
Canada, which included outputs from the HEC-RAS flood model (Brunner, 2002) as part of city
visualisations. However, the digital twin didn’t automate the application of the model, so it wouldn’t
be possible to include analysis using updated the simulations based on real-time information.
Advanced statistical analysis has been included within digital twins to aid the rapid assessment of flood
risk, reducing the computational overhead. For example, Alperen et al.(2021) developed a
hydrological digital twin for flood simulation in a small catchment in France, using a hybrid physical
and statistical approach, where a neural network was used to approximate the outputs from the
physical model. However, the transferability of such an approach to other areas may be limited.
Similarly, Jiang et al. (2021) used physics-informed machine learning for a coastal digital twin for
assessing areas of flooding. Tarpanelli et al. (2023) demonstrated that the use of large volumes of
satellite imagery for rapid, automated, mapping of flood inundation can be considered as a
component of a larger digital twin system.

Digital twins have also been demonstrated as a way to develop smarter, nature-based solutions to
hydro-meteorological hazards such as floods (Ruangpan et al., 2023), or as a way to act as an efficient
flood prediction tool for emergency warning, reacting to observational data using Al (Manocha et al.,
2023). In ongoing work, the FloodDAM-DT project aims to “provide an automated service to reliably
detect, monitor and assess floods at global scale”, using Earth observation data and modelling to
provide rapid detection and assessments of ongoing flooding in near real-time (Suquet et al., 2023).
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The FloodDAM-DT proof-of-concept project is a large collaboration between CNES and NASA/ JPL and
demonstrates that the use of the digital twin concept in disaster risk management will likely receive
increased research attention over the next few years.

2.2 Purpose of our work and design principles

The work outlined above demonstrates that that digital twins show great potential to aid in flood risk
assessment and management. Limitations of previous work include a narrow application to one or
two sites, the offline use of flood models meaning that they are unable to react to new information,
and a focus on mapping or detection for emergency management, rather than preparedness through
improved scenario assessment. While this latter approach is important, there is currently a gap in the
availability of generally applicable digital twins for improving flood risk assessment ahead of events,
to enable society to be better prepared for them.

The focus the research in this project was to develop an environmental digital twin which brings
together computational models of flood inundation with other data, for hazard assessment,
management, and mitigation. The developed digital twin was designed to enable the automation of
flood risk assessment, such that multiple scenarios can be assessed rapidly. This may be particularly
useful in response to updated information, such as in response to observed river levels or forecast
rainfall (i.e., emergency management), or for regular updates given new data such as new scenarios
(e.g., climatic), or new built infrastructure. The digital twin we have envisaged can bring together and
processes the data needed for flood risk assessment and use these for scenario assessment within
computational modelling. The digital twin can then analyse the impact of these scenarios and update
them given new information. Such a digital twin would enable flood risk assessments to be completed
more rapidly and at lower cost, and will facilitate detailed, standardised risk assessments at the
national scale. The main purposes the flood resilience digital twin are to (i) automate the process of
developing pluvial and fluvial models, (ii) capture and analyse topographical and infrastructure data
to model inundation and flow information in an urban setting, and (iii) assess the impact of inundation
on infrastructure.

The fundamental design principle of our work is that the digital twin should broadly adopt the
“Findable, Accessible, Interoperable and Reusable” (FAIR) principles (lvanova etal., 2019). In
particular, the digital twin should be:

e Open:the digital twin should be open by default; it should use and contribute to existing open-
source libraries and be released as an open-source codebase to be built on. The data sources
ingested by default should be open.

e Extendable: the software libraries used within the digital twin should selected partly based
on the possibilities of future work; for example, 3D visualisations which will enable future
development of augmented and virtual reality applications.

e Interoperable: using established data and API standards and best practices, the digital twin
should be accessible by other server systems or digital twins, enabling it to form part of a
future ecosystem of interconnected digital twins, rather being independent.

* Replicable: rather than limited to one site as with many existing digital twins, for which
significant additional effort is required to transfer to different sites, the digital twin should be
designed to “self-generate” for sites of user interest, initially for anywhere in New Zealand but
with the possibility of being replicable globally.

e Dynamic: the hydraulic modelling engine needs to be embedded within the digital twin,
through automated exchange of data and modelling results, enabling simulations to be run on
demand.
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e Versatile: the digital twin should be agnostic towards which hydraulic modelling engine is
selected, meaning that additional modelling engines can be embedded in future, for
improvements or model benchmarking; it should be straightforward to add additional data
sources to the digital twin, including those which may be provided by other twins.

e Scalable: the methods used need to be efficient, with multiple scales of simulations possible
and deployable on cloud-computing, while keeping track of and storing data and simulations
performed to avoid unnecessary repetition of the same processing.

While ambitious, our research has been underpinned by methods developed in an aligned research
programme, Ma te haumaru 6 te wai, led by NIWA. This programme is assessing flood risk across New
Zealand. Both research programmes have benefited from the engagement: the digital twin project has
utilised the software libraries for LiDAR processing and the hydraulic modelling engine developed by
the NIWA team, the digital twin team has in turn contributed improvements back to the upstream
code. Furthermore, the standardising of the methods used between the two programmes will enable
to the digital twin to act as a possible communication tool by Ma te haumaru 6 te wai; it additionally
democratises access to the assessment of additional scenarios, which could be run on demand rather
than these being centralised.

The design principles above were developed in consultation with stakeholders from key organisations
involved in flood risk management or industry. This consultation primarily consisted of two workshops
which are summarised in the next section. Further input was provided as part of conference
presentations (e.g., to the conferences of the Association of Local Government Information Managers,
Stormwater New Zealand, and the UN World Geospatial Information Management Congress) and
digital twin discussion workshops organized by FrontierSI and the Digital Twin Partnership.

3 Development workshops

Engagement and design workshops were held at the start of the project in January 2021 and a follow-
up workshop in January 2022. The format and outcomes of these workshops are summarised here.

To initiate the project a Flood Interoperability Workshop was run which brought together a wide range
of professionals from local council, engineering lifelines companies, engineering consultancies and
researchers. The purpose of the workshop was to develop a proof-of-concept digital twin to assess
the risk of urban flooding. The purpose of such an urban flood digital twin was specified to:

1. Automate the process of developing pluvial and fluvial models.

2. Capture and analyse topographical and infrastructure data to model inundation and flow
information in an urban setting.

3. Assess the impact of inundation on infrastructure.

This workshop was designed to test the usability of infrastructure and environmental data to meet the
outcomes stated above. The ultimate aim was to ensure data interoperability that will enable the full
development of the digital twin a local to national scales. Furthermore, the workshop was run as a
precursor to the aligned NIWA-led research programme, Ma te haumaru 6 te wai, which aims to assess
and mitigate flood inundation hazard and risk across Aotearoa/New Zealand.

The workshop focussed on the effects of a significant fluvial/ pluvial flood event on an urban area's
physical infrastructure. Other concerns such as public safety, social, environmental and economic
impacts of such an event was out of scope. Kaiapoi was chosen as the physical location to study based
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on its moderate size, good variety of infrastructure in its boundaries, data availability for the region
and the proximity to the workshop location.

The participants were chosen based on their expertise and ability to provide a good cross-section of
the various agencies likely to be involved should such a flood event occur. The timing of the invites
and the event likely impacted the number of people who attended. However, interest was high, and
enough people with the right skills and background responded to make the event a success.

The workshop outputs included:

1. A prototype digital twin that modelled a flood scenario in Kaiapoi.

2. Identifying which data was missing, where these data may be found and areas where
other techniques such as Artificial Intelligence (Al) may be needed to fill in those data.

3. A clear articulation of the issues that need to be addressed in the final model.

4, A validation of the prototyping methodology using the Feature Manipulation Engine
(FME) software.

5. An understanding of the importance of data standards in the development process.

Based on the outcomes of the workshop, the most appropriate technology stack while enabling the
digital twin to be open source was identified, and the information architecture for the digital twin was
designed.

A follow up workshop was held a year later in January 2022, to update stakeholders on the progress
made and to get their inputs on the future directions of code development. Key outcomes were:

1. The ability to generate multiple scenarios, particularly those which are user-specified, would
be considered to be high value.

2. More complex geospatial analyses which could be addressed were identified, such as
transport routing during a flood event, would be useful.

3. Additional dynamic data sources were identified, including rain radar and climate forcing data.

4. While avisualisation engine was welcomed, it was considered that most agencies would want
to use their existing systems to present data.

5. Organisations would like to obtain model results and download them for use in their own risk
models, which again highlighted the importance of flexibility in the software design.

6. The best approach to achieve a flexible system which is widely adopted was identified as via
an Application Programming Interface (API), enabling organisations to connect their existing
systems to the digital twin.

Following this feedback, the development timeline was extended and adjusted. In particular, an API
was added to the design and the code was adjusted to reflect this.

4 Spatial domain for prototype development

To facilitate software development and stakeholder engagement, the digital twin was developed and
tested as a prototype for the town of Kaiapoi in Canterbury, 12 km north of Christchurch (Figure 1).
However, under the design principles the digital twin was built so that it can ingest data as needed, to
“self-generate” for any location in New Zealand. With the prototype system completed, follow-on
work will enable further development and deployment nationwide.
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The Kaiapoi site provided a good test case for the prototype development since, in addition to being
local to the development team, it has a complex flood risk, including high fluvial flood from the
Waimakariri River which flows into the area from the west, fluvial flood risk from smaller rivers which
flow through the town, pluvial risks from intense rainfall events, and coastal flood risk from high tides
and storm surges. Further, there is a realistic prospect of each of these types of flooding occurring
simultaneously, in compound flooding. The area is additionally extremely low relief (Figure 2),
meaning that the prediction of flood extents and depths requires high precision.

Rivers/ lakes
—— Stopbanks (levees)
- State highways

Urban area

Forest/ other vegetation

Arable

Pasture/ grassland/ open space
Contains data sourced from the LINZ Data
Service, Landcare Research New Zealand Ltd,
and Environment Canterbury, licensed for reuse

under CC BY 4.0. SRTM elevation data were
obtained from the USGS.

" Central Christchurch, 12 km |
v

Figure 1: Kaiapoi location and situation to the north of the lower Waimakariri River. The town is protected from flooding by
a stopbank (levee) system and pumping stations.

Figure 2: The area around Kaiapoi has extremely low topographic relief making it susceptible to widespread flooding. Areas
of the town are part of a “red-zone” which have been retreated from due to liquefaction during the 2010-11 Canterbury
earthquakes, which increased flood risk.
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5 Flood Resilience Digital Twin: Software summary

In this section, an overview of the data processing (back-end system) is provided at a high level. For
details of the software implementation, please refer to the Appendices which include documentation
for the APl and descriptions of all functions. The visualisation (front-end) is summarised in Section 6.

5.1 Conceptual design

The conceptual design of the digital twin developed at project inception (Figure 3), includes geospatial
databases to hold the input data, including static data used for boundary conditions (e.g., LiDAR data,
stopbanks, storm water, channel geometry and land cover), dynamic boundary data used for model
water inputs (e.g., river gauge data, tide levels, rainfall data, design flows), observational data for
model comparison (e.g., airborne flood imagery, SAR flood imagery, survey data) and data for
infrastructure and population for impact assessment (e.g., buildings, census data, roads and rail). A
design principle for the digital twin was that, for a selected area, these data are downloaded from
their respective agencies and stored in a local database without modification (i.e., features are kept
intact). A local copy of the data is maintained to avoid the high bandwidth which may be associated
with multiple downloads, as well as speed up processing when the data are used for multiple analyses.
To achieve this, a database of the metadata is maintained, which tracks areas which have been
previously processed, and when.

Im===--msmsmmmo-mmm------- Flood Resilience Digital Twin -----------------------
Input data GeoFabric Flood model Output data

Model grid/ mesh
Model

Static boundary data Dynamic boundary (past event)

(past event) Model parameter sets

Dynamic boundary data Calibration
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flows, timings.

Dynamic boundary
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(scenario events)

- ‘ %
Flood risk

assessment, {

Model
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—
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Uncertainty

Model
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(uncertainty)
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Figure 3: Flood resilience digital twin conceptual diagram

The items in the digital twin conceptual diagram (Figure 3) which are yet to be implemented are:

¢ Input data: observational data of flooding (e.g., from satellite imagery) and population data
(e.g., from the census) are yet to be included.

e GeoFabric: error estimation based on the data processing to enable model uncertainty
estimation.

¢ Flood model: calibration, which requires observational data of flood extent, and uncertainty
analysis.

e Output data: model parameter sets and uncertainty not included.

e Post processing: impacted infrastructure identified by a full risk assessment needed, e.g., with
a connection to RiskScape software.

Each of these will be implemented in future work. However, the current version has full end-to-end
capability for flood risk assessment, as illustrated by Figure 4. A user specifies an area of interest (AOI)
and a supported scenario, directly or by using the front end. In either case, an APl request is sent to
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the back-end system and the pipeline of processing commences. First, the system will check the
database to determine whether data have already been obtained for the AOI. Only if they are missing
will data be requested from remote servers, thereby avoiding excessive load. Periodically, the system
will check providers for updated datasets. The system will also check whether a simulation for this AOI
and scenario has already been performed. If it has, it will be able to quickly serve that simulation back
to the user without the need to run the BG-Flood software (Bosserelle, 2018; Bosserelle et al., 2022).
If the scenario has not been run, model input files will be generated, and the simulation run. For the
Kaiapoi study site used in the prototype, each simulation takes around 30 seconds for a 2-day flood
scenario. One of the key advantages of BG-Flood is that it will facilitate the scaling of the system to
larger sites, as the software is designed to take advantage of GPU computing.

Data sources

Processing

Open Topography.
Check for LiDAR point cloud LiDAR processed to Visualisation
existing . hydrologically-conditioned
User LINZand OpenStrestMap: grid (GeoFabrics).
defines Rivers LJ OPEN DATA CUBE
area of |::> Buildings |:> i
interest FALSE Roads [ Inputto Generation of model Added to E>
Rail databases boundary conditions [ databases |~
NIWA \\__}__/ for scenarios. SR
pt g W B
River F_n_v_l ronment Model input files. o
a TRUE Classification AOl record Model scenario
Tide model Vector data tables o metadata
High Intensity Rainfall LIDAR metadata
Design System B Scenario data Model run: BG-Flood or

LISFLOOD-FP -

Figure 4. Overview of the current data processing and flood assessment processing pipeline.

5.2 Current implementation

In the current version, the list of included data is presented in Figure 5. After download and
incorporation into local databases, data are further processed within the digital twin to create the
“GeoFabric”, which refers to the model inputs and boundary conditions, including the scenarios
assessed, in the appropriate model format (in this case, BG-Flood). The model is then run, and the
digital twin maintains metadata regarding simulations. Finally, model results are incorporated back
into the digital twin for analysis, such as identifying flooded buildings.

Currently, the software we have developed integrates spatial and other data from multiple vendors
into databases, then extracts and processes the data for the automated simulation of a range of
possible flood scenarios, using the BG-Flood hydraulic model. The data processing includes the
extraction and conversion of LiDAR point cloud data into hydrologically conditioned digital elevation
models, processed using the GeoFabrics Python package (R. Pearson, 2021; R. A. Pearson et al., 2023)
(Figure 6 and Figure 7). These are then converted into the formats required to run BG-Flood, along
with scenarios derived from statistically generated pluvial and fluvial boundary conditions.

To run the flood model, dynamic boundary condition data are obtained which represent flows into
the domain and a downstream tide level (if the site is coastal) (see Figure 8 for example inputs).
Rainfall and river flow input data are derived statistically from existing databases which have been
generated based on historical observations. For rainfall, the High Intensity Rainfall Design System
(HIRDS)! from NIWA is used, which enables depth-duration-frequency statistics to be obtained for rain

1 https://hirds.niwa.co.nz
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gauges across the country and provides estimates of future depths under different scenarios of
climate change. The digital twin maintains a database of all sites for which these estimates are
available and uses Thiessen polygons to determine the aerial coverage of each gauge. When a user
selects an AQI, its extent is intersected with these polygons, and the data for each gauge needed for
the requested scenario are obtained from the HIRDS server.
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Figure 5: Data sources included in the current version of the digital twin. All are nationally available data and provide
sufficient functionality to assess flood risk but may be supplemented by local data through extension of data specifications.
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Figure 6. The GeoFabrics library (R. Pearson, 2021) is used to process LiDAR data to create a hydrologically conditioned DEM
suitable for use in the BG-Flood model (Figure: R. A. Pearson et al., 2023).
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Figure 7. LiDAR point cloud data are downloaded by the digital twin from OpenTopography and processed into a model grid
using GeoFabrics software, which removes surface features which would affect flow and ensures that a suitable bathymetry
is assigned to river channels and coastal areas.
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Figure 8. Dynamic boundary conditions are statistically derived for rainfall, tide levels and river flows, based on analysis of
rainfall and flow levels by NIWA, and the annual maximum tide for the location selected (if coastal).

For river flow, data from NIWA’s River Environment Classification (REC)?, version 1 are used. These
data contain flood level estimates for different annual exceedance probabilities, for river vector data
across the country. However, climate scenarios are missing, and the data are further limited since the
river vectors were derived from 90 m resolution topographic data (SRTM), meaning that their locations
contain significant errors and they often do not exactly align with rivers in the LiDAR data. While a new
version of the REC data is available, these do not contain flood level estimates. To be able to use the
data, the digital twin needs to: identify which river vectors cross the boundary of the AOI requested,
determine whether the river crosses the boundary multiple times and select the one furthest
downstream, then search in the local neighbourhood for the correct location of the river based on the
LiDAR elevation data. Data for each vector needed are then obtained from REC1 data for the requested
scenario, and a hydrography generated using a design hydrograph approach. In future versions of the
digital twin, improvements to the river network data and inflow statistics would be beneficial.

For the tide level, by default the annual maximum high tide for the last year is obtained from NIWA's
Tide Forecaster? for the closest available location. A limitation is that these data do not contain
observations of sea level, and the predicted tide will be different to actual due to weather conditions

2 https://catalogue.data.govt.nz/dataset/flood-statistics-2018-recl
3 https://tides.niwa.co.nz/
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particularly those associated with storm surges. In future versions of the digital twin, alternative
sources of sea-level data may be included. The peaks of the rainfall, river flow and high tide data are
temporally aligned within the scenarios assessed in the digital twin, and should therefore be
considered a worst-case scenario, in which the tide has the greatest possible impact on river flooding.

To account for sea level rise in the scenarios, differing levels of sea level can be included on top of the
tide level. The digital twin will obtain scenarios for the requested tidal location from the NZ SeaRise
project®. This dataset accounts for both vertical land movement and sea level rise and provides data
for multiple climate scenarios with projections out to the year 2300.

For the requested scenarios, the digital twin will run BG-Flood, record the necessary metadata for
future retrieval of the model simulation. The digital twin will detect once the model has completed,
then send the results in the requested format using the API. If this was the front-end system making
the request, the results will be stored sent to the GeoServer so that they can be ingested into the
Cesium platform. An example of model output for an extreme flood scenario is shown in Figure 9,
which shows three time slices from the model scenario. The frequency of outputs can be adjusted
depending on the level of detail required.

The digital twin will additionally generate spatial intersections with data of the built infrastructure to
enable the assessment of impact. Figure 10 illustrates two examples for buildings and roads, for the
maximum flood depth which occurred during the simulation. While these examples present the
overall impact, the full dynamic flood data are also available from the model, meaning that the impacts
can be assessed as they evolve during the flood event. Additional types of critical infrastructure can
be assessed for flood impact, including specifying whether a depth threshold is reached. An example
analysis which is possible is the assessment of depth inundation against critical depth thresholds for
infrastructure such as electrical transformer stations, which would be useful for electricity grid
management during flood events. A further example is that the road-depth analysis can be extended
based on vehicle type, with automated re-routing of vehicles based on a road network analysis which
accounts for a real-time estimation of likely flood impacts. These examples were identified during our
engagement workshops with stakeholders.

While extensions to the analyses are possible internally in the digital twin software, its flexible
framework provides organisations with the opportunity determine their own analyses of model
outputs, by using the APl to obtain model simulations and intersecting them with their own data. This
also overcomes potential issues of data sovereignty, since not all data need to be included in the digital
twin database.

Our development roadmap (see Section 8) includes the automated assessment of the impact of the
predicted flooding, based on depth/ flow damage relationships, using a dynamic connection with
RiskScape software. In addition, in future work we plan to continue to develop more advanced
visualisations including the use of AR/VR.

4 https://searise.takiwa.co
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Figure 9. Example flood model depth predictions for an extreme flood scenario: (top) before the flood with normal tidal
inflows, (middle) at the onset of heavy rainfall, and (bottom) during compound flooding with very high tide and river flows
coinciding.
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Figure 10. Examples of the analysis which is possible after the completion of the BG-Flood simulation: (top) maximum
inundation depth intersected with buildings, identifying those flooded at 0.5 m depth or greater; (bottom) roads which are
flooded and therefore present a risk to vehicles are identified.

5.3  Current limitations

There are several limitations in the current implementation of the digital twin, partly due to data
availability, and partly resulting from limitations in the hydraulic modelling software engine used, BG-
Flood. The main known limitations are provided in Table 1. Some of these are included in the current
development pathway (see Section 8). Limitations which were already part of the existing
development pathway are not included, such as functionality included in the conceptual design (Figure
1) but which were not coded within the current version (e.g., a dynamic connection to RiskScape
software).

Table 1. Known limitations of the current flood resilience digital twin and possible solutions

Estimated
difficulty
Dynamic flood = This may lead to a possible over-prediction of flooding for some @ High
management  areas. These data are not readily available, and the BG-Flood
infrastructure = software does not currently support internal transfer of water,

Limitation Implications and possible pathways to solutions

such as meaning that it is non-trivial to implement possible solutions.
pumping Alternative approaches may be to extend the BG-Flood software
stations are functionality or include alternative model software engines, such as

not included. using the approach of Cui et al. (2023), noting that these may bring
different limitations such as limitations in computational efficiency of
licencing restrictions. To overcome data availability issues, the most
flexible approach would be to enable organisations to upload their
own data to the digital twin, although this will create a significant
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Stormwater
drainage pipe
infrastructure
is not
included.

Stopbank
(levee)
breaching is
not included.

Scenarios are
based on
statistics
which may not
be
representative
of current
flood risk, and
simplified
dynamic
boundary
conditions
used

River network
limitations

additional layer of complexity since user-account management and
security would need to be enabled.

While infrastructure such as stopbanks are included, and surface
drainage channels are included implicitly within the LiDAR derived
grid, underground stormwater pipe infrastructure is not included.
This may lead to over-prediction for areas with significant
stormwater drainage pipe infrastructure. The data are available
nationally through an aligned programme of the Building Innovation
Partnership, but the BG-Flood software does not currently include
sub-surface pipe flow. As with pumping stations, consideration is
needed as to whether the software is extended, and by what method
(see Bulti & Abebe, 2020, for a review). However, the most flexible
approach is likely to be to dynamically couple BG-Flood to an existing
model such as the 1D Storm Water Management Model such as in
the research by Yang et al. (2020).

As is common in flood modelling, it is assumed that stopbanks do not
fail (breach) during a flood event, so flooding only occurs where they
overtop. This may lead to an underprediction of flooding, and can
create a false sense of security in communities (Gissing et al., 2018;
Hutton et al., 2019). While the failure mechanisms for levees are
complex (Pol et al., 2023), the BG-Flood software supports levee
breaching and scenarios can be included. Estimated software
development difficulty is low as only a moderate extension of the
digital twin software would be needed. However, the breaching
methods to be used would need to be identified.

Existing statistical analyses of rainfall and river flows were obtained
for use in the digital twin, which greatly simplified the generation of
appropriate alternative scenarios. Estimated flood peak levels were
translated to a standardised design hydrography which enables a
representation of a flood wave but is unlikely to represent actual
river flows. The most flexible approach to overcoming these
limitations will be to enable users to specify their own boundary
conditions for testing, while providing further developing the default
scenarios to be more realistic, such as through the development of
an improved regional flood frequency analysis (Guo et al., 2023;
Smith et al., 2015; e.g., Wright et al., 2020). In addition, a real-time
connection to observational data is not currently enabled, and could
include rain/river/tide gauges, weather model data, and rain radar
data, to enable real-time or forecast flood prediction.

In the current digital twin implementation, NIWA’s River
Environment Classification (REC) version 1 data are used. These have
a highly generalised spatial representation of the locations of the
river networks, leading to additional complexity of the processing to
ensure that the injection points for water entering the model domain
are placed in the appropriate locations (i.e., in rivers within the model
grid which is derived from LiDAR). Furthermore, there are “rivers”
within the REC which appear to be artefacts of the processing, rather
than existing, and these need to be identified and removed (the
current implantation looks for connectivity to the downstream
network). While there is are newer versions of the REC data, they lack
the flood frequency statistics needed for scenario generation.

Medium

Low

Low to
medium

Medium
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6 Flood Resilience Digital Twin: Visualisation frontend system

To complement the data processing and computational engine, which forms the foundation of the
digital twin, we have developed a web-based visualisation environment based on the Cesium open
platform for 3D geospatial data®. While the primary focus has been on the development of the
backend system, with engagement with stakeholders suggesting that this was the correct approach,
the implementation of a frontend system has been important to facilitate communication, both with
stakeholders and during conference presentations. At the start of the project, it soon became
apparent that diagrams of database systems were not sufficient, and additional developer resources
were brought into the project to enable a frontend system. In this section, a summary of the work
completed and remaining is provided.

The CesiumJS® library was selected because it is widely used in other digital twins, such as Digital Twin
Victoria’ which is built using the TerrialS® library that incorporates CesiumJS. We have developed the
current digital twin front end using the CesiumlS library directly, since it allows for greater flexibility
to code future advanced functionality such as AR/VR connections. We have further experimented with
the use of Open Data Cube (ODC) software® to enable temporal point query of simulation results.
While the ODC is primarily designed for remote sensing software, the fundamental data structure of
the model outputs and remote sensing imagery is the same: multi-temporal raster image stacks.

The software here is at a lower level of maturity to the backend system. It forms part of a wider-scoped
software project within the Geospatial Research Institute to develop 3D visualisation applications?®,
and some of the code developed for the digital twin will be integrated into that library. As part of this
development, functionality is being developed for a user interface (Ul) which will enable, at a
minimum, selection of the AOI and standardised scenarios to be run.

The frontend system and its connection to the backend with the current software environment is
illustrated in Figure 11. CesiumlJS is used for the primary visualisation engine. For most visualisations,
data are requested from GeoServer, into which spatial layers from flood simulations, and their
intersections with built infrastructure, are inserted. This enables 3D visualisation of flood depth, with
impacts to infrastructure highlighted. For example, Figure 12 shows the maximum flood depth during
the simulation with flooded buildings highlighted.

Flood scenarios are currently saved in the native format of the model, within the server file system,
with metadata maintained about the simulation to ensure that simulations are not repeated if already
done. In the case of the BG-Flood model used here, the model results are stored in the netcdf scientific
data format. To include all model outputs within the frontend visualisation, we have experimented
with the use of the ODC engine, which primarily facilitates temporal query between each flood layer
(i.e., each epoch or timeslice produced by the model, the period of which may be user-defined). This
has enabled the frontend to include temporal point-query as illustrated in Figure 13. When a user
clicks on a location within the model domain, the stack of raster flood depth layers can be queried at
that location and the resulting temporal depth vector displayed as a time-series plot.

5 https://cesium.com/

% https://cesium.com/platform/cesiumis/

7 https://vic.digitaltwin.terria.io/

8 https://terria.io/

9 https://www.opendatacube.org/

10 https://github.com/GeospatialResearch/geo-visualisation-components
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Figure 11. Sketch of the frontend system and its relationship to the backend.
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Figure 12. The default 3D visualisation is for the maximum flood depth during the scenario. Here, buildings are highlighted
in red if they are flooded at a depth of 0.1 m or greater.
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Figure 13. The use of the Open Data Cube facilitates user point-query of flood depth over time, extracting data for locations
from the stack of predicted flood depths. In this case, the tidal influence on predicted flood depths is clear.
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Since the flood resilience digital twin can run multiple scenarios, alongside the point query
functionality for depth over time for a selected location, we have experimented with enabling a slider
to compare between two different scenarios. While the functionality is still experimental, this will
facilitate comparison between scenarios for issues such as the assessment of the impact of sea level
rise on flood inundation, as illustrated in Figure 14. The user can move the slider between two
scenarios to observe the difference made in changing a variable, such as the increase in the level of
the downstream boundary condition in this case. The functionality still needs to be extended to work
with a 3D view of the data, and to be integrated with the point-query functionality illustrated in Figure
13.

Depth (m
1

¥ Scenario comparison
Y (right: increased sea level)

Figure 14. Comparison between two flood scenarios: (left of slider) baseline flood scenarios for requested flood likelihood;
(right of slider) the same likelihood but with an added scenario of sea-level rise, leading to increased compound flooding.

The frontend environment is still under active development and there are several issues to be
addressed. For example, a limitation of selecting a depth threshold to highlight impact is that buildings
are assumed to be at the ground level. However, buildings are usually raised to some extent, known
as the floor level, which provides some protection of the interior of the building against flooding.
Shallow flooding is not likely to cause damage to the building, and this should be accounted for in the
impact assessment. To address this, the depth threshold variable can be dynamically updated through
the user interface, or data for flood levels could be used on a per-building basis to identify if the flood
level is at or approaching this level. However, data on building flood levels are frequently not available
publicly.

Secondly, currently missing from the visualisation are flood water flow rates, and the hazard levels
caused by combined flood depth and flow rates. These data are available from the BG-Flood software
and visualisations can be developed with only limited additional coding to the frontend system. This
would also enable a point-query of the likely impact of a flood event, for example to identify buildings
which are at greater risk of destruction during the flood event.
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Another current limitation is that the full dynamics of the flood scenario are not currently captured
using animation of predicted flood depths. While this is relatively straightforward to achieve in 2D, a
dynamic animation of flood depth in 3D is more complex. We are currently exploring how we will
include animations of requested scenarios in CesiumlS and this will be added to the code in a future
version. It is likely that using the Cesium Markup Language (CZML) for temporally dynamic data,
combined with a mesh which represents the water surface elevation, will be an appropriate approach,
similar to the approach implemented by Kumar et al. (2018).

Finally, the software has been envisaged to be a flexible system which can adapt to the environment
of end users. Cesium was selected as it fits with this functionality and already supports multiple virtual
reality engines, including the Unity!! and Unreal Engine'? environments, which can enable future
development of immersive visualisations for improved communication of flood risk. In addition, it
connects with NVIDIA’s Omniverse, which enables 3D visual effects that can enable much more
realistic virtual environments.

7 Key lessons and challenges

The Flood Resilience Digital Twin was designed and developed to be reproducible for any location of
interest within New Zealand by end users, through a process of “self-generation” once given an AOI
by the user. The software was developed to automatically obtain the data needed from suppliers to
generate, process them as needed, simulate flood scenarios, and assess flood risk. There was no
available “off-the-shelf” example to build from nor was there an existing codebase to adopt; but digital
twin we have created was only made possible by the availability of the data and software libraries
which underpin it.

7.1 Data

New Zealand is acknowledged to have a strong open data foundation (World Wide Web Foundation,
2018), and this is a key reason why the creation of this digital twin was possible within the country.
Substantial amounts of critical data are needed for flood risk assessment, including high-accuracy
terrain data, river networks data, observations of river flow, rainfall and tide levels, and data for the
built infrastructure. Of particular significance for this research is the national LiDAR programme which
was initialised and managed by LINZ to provide NZD$19M of co-funding for LiDAR data collection to
councils through a provincial growth fund®®. Although this has now completed, it has led to around
80% of the country being covered by highly accurate topographic data'?, all available under an open
licence. Before this programme, it would not have been possible to have developed the digital twin
under its “self-generation” design philosophy: it would have to be restricted to the relatively few
locations with available data.

Other data in the digital twin which are sourced from LINZ under an open data licence include
buildings, roads, and other infrastructure. These open data are critical to enable technological
developments such as the digital twin created in this research. They act as an enabler to these

1 hitps://unity.com/

12 https://www.unrealengine.com/en-US

13 https://www.linz.govt.nz/products-services/data/types-linz-data/elevation-data/provincial-growth-fund-
lidar-data-collection-now-progress

14 https://www.linz.govt.nz/products-services/data/types-linz-data/elevation-data
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developments for each of the different benefits they can bring. However, data standards are also
critical to these developments: they facilitate the development of digital twins by greatly reducing the
work required to use data from different sources, which need to be standardised to be useful. The
digital twin here was developed using only nationally available datasets with clearly specified
standards. This meant that some attributes were not possible to bring into the twin. An important
example of this is the buildings data used: the current LINZ dataset only provides the building outline,
which is a fundamental property for the use of the data. However, the data miss important
information such as floor heights, and other properties including the building structure. These data
are not available in a consistent, standardised way, which greatly increases the amount of work which
is needed to develop digital twins.

LINZ has operated a programme which identifies priority datasets for resilience and climate change
(LINZ, 2023), which each will be provided under open licencing for the benefit of the country. Many of
these data sources (e.g., buildings, roads, and other infrastructure) will be directly useable by the
existing digital twin with only minor updates to the data source definition table. Some of the issues
present in current data (e.g., lack of building heights and other attributes) will be addressed, though
not floor levels. An improved river network based on LiDAR data will also become available, though
this will likely not include the flood frequency statistics needed. The fundamental challenge however
remains the ingestion and standardisation of the data which underpin digital twins.

While these national datasets are an exemplar of best practice in open-data governance, at the sub-
national level there is considerable variability in both the availability and the standards used for critical
datasets. Many councils across New Zealand release data under an open licence (there are nearly
33,000 datasets on the data.govt.nz data catalogue®®). While this is welcome, there is a lack of
standardisation between councils regarding formats, the platforms used to host datasets differ, and
not all councils release the same types of data. This makes the task of combining data into a consistent
database laborious and places a significant barrier to the creation of technology which can build on
these data for wide benefits. A good example of the collation of critical data such as observations of
water quantity across the country is Land, Air and Water Aotearoa (LAWA)®®. This site provides a live
statistical summary of rainfall and river flow gauges across the country, operated by different regional
councils; but the data are limited to only a recent period and are not available programmatically. Each
council runs their own separate site for data distribution, with differing levels of access and different
standards. NIWA operates its own, separate sites, with access provided via an APl on its Hydro Web
Portal’, though its coverage is very limited.

This fragmented system for access to dynamic observational data creates a barrier to the
implementation of technologies such as digital twins. This can be contrasted with the river gauge
network operated by the United States Geological Service, which runs National Water Dashboard®®
through which all data are available under an open licence, and the National Water Model*®, operated
by the National Oceanic and Atmospheric Administration, which provides open data access to river
flow forecasting for short (1 day), medium (10 day) and long (30 day) ranges (Johnson et al., 2023).

15 https://data.govt.nz/

16 hitps://www.lawa.org.nz/explore-data/canterbury-region/water-quantity/

17 https://hydrowebportal.niwa.co.nz/

18 https://dashboard.waterdata.usgs.gov/app/nwd/en/?region=lower48&aoi=default
19 https://water.noaa.gov/map
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7.2 Open-source software

The digital twin for flood resilience was built on open-source code libraries: it has only been possible
through the sharing of these codes. Similarly, in other projects open-source software is driving the
development of digital twins (Barnstedt et al., 2021). However, we are further contributing back to
the community by releasing the digital twin software as a fully open-source solution which can be
used by others as a foundation for developing other digital twins, to either adopt our codebase or
learn from the methods used within our software.

Although we have built on open source, we have needed to develop much code from scratch,
specifically designed to be functional for the purpose intended. While there are software libraries
orientated at digital twins which are released with open-source licencing (e.g., Ditto%, iTwinJS?! and
Azure Digital Twins??), these are often limited in scope and do not support complex modelling such as
those required by computational modelling. This may change with the development of a new domain
working group for “Geo for Metaverse” within the Open Geospatial Consortium?3.

7.3  Physics-based Digital Twins

A key design principle we chose to adopt was that the digital twin should not only visualise and assess
model predictions but also run the simulations. This means that the digital twin can run new
simulations if given updated data or new scenarios, and follows the “self-generation” design principle,
in that simulations do not need to be run ahead of digital twin deployment. Crucially, this allows the
digital twin to make accurate predictions outside the observational record, such as an extreme flood
event, since its predictions are grounded in physics. The concept of a physics-based digital twin has
received increased research attention, particularly if operating in a hybrid mode where a machine
learning algorithm either helps to improve data used in the computational model, or learns from the
model itself to help make rapid predictions (Ritto & Rochinha, 2021; e.g., Sun & Shi, 2022). Away from
the digital twin concept, machine learning is being integrated with physics-based models to enable
more detailed, faster predictions of extremely large and complex systems such as the Earths climate,
while remaining physically realistic (Kashinath et al., 2021; for example, Rolnick et al., 2023; Willard
et al., 2020).

Arguably, a model of the climate system can be considered as a comprehensive digital twin, but it is
one which should be connected to other local twins which can pull relevant data into their analyses.
A network of digital twins is required, which each share data between them using standardised
communication protocols. Work such as Twinbase (Autiosalo et al., 2021) towards the creation of a
“Digital Twin Web” likely points the way to the future. This is further emphasized by the creation of
Destination Earth (DestinE) digital twin programme of the European Union: “By coupling the DestinE
digital twins with [...] highly specialized and localized [digital twin] tools through standardised
interfaces many decision-making processes at local level will be able to benefit from the advanced
capabilities that DestinE provides” (Hoffmann et al., 2023).

20 hitps://eclipse.dev/ditto/index.html

21 https://www.itwinjs.org/

22 https://azure.microsoft.com/en-us/products/digital-twins/

23 https://www.ogc.org/press-release/ogc-announces-new-geo-for-metaverse-domain-working-group/
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8 Future work

We have demonstrated a successful prototype digital twin with a specialisation on flood resilience.
For the next phase of development, we will seek to address some of the limitations detailed in Section
5.3. An outline of the road map for development is given below.

Backend functionality:

Additional scenarios will be included, and a mechanism to enable users to adjust scenarios or
specify data to use will be developed.

Connections to real-time data will be included, enabling the digital twin to be responsive.
Connections to weather forcing data will be developed, such as those available from the
ECMWEF, and in preparation for the development of the DestinE system.

A storm drainage system will be developed, integrating existing pipe data, and the necessary
model engine produced, improving the representativeness of model scenarios.

Machine learning methods will be integrated into the digital twin, for both uncertainty
estimation of the predicted modelling and to enable rapid hybrid modelling based (these
topics are currently the subject of research by PhD students within the GRI).

Connection to the RiskScape software will be developed, enabling a more comprehensive
assessment of flood impacts.

Frontend/ visualisations:

An improved and integrated user interface will be developed, with a greater level of control
provided.

Dynamic visualisations will be developed, enabling animations in 3D within the Cesium
environment.

Immersive visualisations in VR and/or AR will be developed, enabling greater public
engagement for flood risk education.

Deployment:

Develop a hosted digital twin solution, based on scalable cloud computing to enable model
simulations.

Scale and test across New Zealand.

Longer term, develop the digital twin in other countries, including a globally applicable version
of the digital twin.
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10 Appendix A: Software installation

All code is available at: https://github.com/GeospatialResearch/Digital-Twins. The documentation
below is a drawn from the README.md file?*, which details the steps needed to install the software
(using Docker) and get the databases setup.

10.1 Introduction

According to the National Emergency Management Agency, flooding is the greatest hazard in New
Zealand, in terms of frequency, losses and civil defence emergencies. With major flood events
occurring on average every 8 months (New Zealand — FloodList), it is necessary to produce high
precision flood models and in order to do better planning, risk assessment and response to flood
events, making plans in advance can make all the difference, not just to property owners at risks, it
will also help insurance companies who make underwriting decisions on properties, the banks
supplying the property finance, the telecommunications and utilities companies providing vital
services to homes and offices, and the government agencies tasked with protecting communities and
their assets. Digital Twin can provide a better understanding of the degree of impact flood events can
have on physical assets like buildings, roads, railways, transmission lines, etc. Digital Twin is a real-
time digital clone of a physical device. Anyone looking at the digital twin can see crucial information
about how the physical thing is doing out there in the real world. Digital Twin not only represents the
current status of the visualised assets but also how they will perform/react to future situations. The
build twin when used to run flood models combined with other sources of information can allow us
to make predictions. The first step of building a Digital Twin is data. Data is collected from an open
data portal provided by multiple organisations or data providers such as LINZ, LRIS, stat NZ, ECAN,
opentopography, NIWA, etc. The collected data is stored in the local database using PostgreSQL which
is an open-source relational database system and supports both SQL (relational) and JSON (non-
relational) querying. PostgreSQL is a highly stable database backed by more than 20 years of
development by the open-source community. Spatial data is the primary data used for implementing
the Digital Twin model. Therefore, PostgreSQL with the PostGIS extension which supports geospatial
databases for geographic information systems (GIS) is the most preferable DBMS for this project. Also,
it provides support for Python, C/C++ and JavaScript, the programming languages used for building
Digital Twin. The spatial boundaries are currently limited to New Zealand with the potential of getting
extended further. The reason for creating a database are: 1. Avoid unnecessary network overhead on
the data providers 2. To avoid delays in fetching the same data from the APl when required again and
again to run the models. 3. To store the data only for the Area of Interest.

The Digital Twin stores APl details and a local copy of data for the required Area of Interest provided
by LINZ, ECAN, Stats NZ, KiwiRail, LRIS, opentopography, and NIWA in PostgreSQL.

10.2 Basic running instructions
The following list defines the basic steps required to setup and run the digital twin.

10.3 Requirements
. Docker

. Anaconda

2 https://github.com/GeospatialResearch/Digital-Twins/blob/master/README.md
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Node.js / NPM

10.4 Required Credentials:

Stats NZ API Key

LINZ API Key

Cesium access token

10.5 Starting the Digital Twin application (localhost)

1.
2.

Set up Docker, Anaconda, and NPM to work on your system.

In the project root, in an Anaconda prompt, run the following commands to initialise the
environment:

conda env create -f environment.yml
conda activate digitaltwin

While this is running, you can continue with the other steps until using the environment.

Create a file called . env in the project root, copy the contents of .env.template and fill in
all blank fields.

Set any file pathsin .env if needed, for example FLOOD_MODEL_DIR references a
Geospatial Research Institute network drive, so you may need to provide your own
implementation of BG_flood here.

Create a file visualisation/.env.local. Inthis, fill in
VUE_APP_CESIUM_ACCESS_TOKEN=[your_token_here], replace
[your_token_here] with the Cesium Access Token

From project root, run the command docker-compose up --build -dtorunthe
database, backend web servers, and helper services .

Currently, the visualisation and celery_worker services are not set up to work with
Docker, so these will be set up manually.

1. Inone terminal, with the conda environment activated, go to the project root
directory and run celery -A src.tasks worker --loglevel=INFO --
pool=solo to run the backend celery service.

2. Inanother terminal open the visualisation directory and run npm ci && npm
run serve to start the development visualisation server.

You may inspect the logs of the backend in the celery window.

You may inspect the PostgreSQL database by logging in using the credentials you stored in
the . env file and a database client such as psql or pgAdmin.

10.6 Using the Digital Twin application

1.
2.

Visit the address shown in the visualisation server window, default http://localhost:8080

To run a flood model, hold SHIFT and hold the left mouse button to drag a box around the
area you wish to run the model for.

Once the model has completed running, you may need to click the button at the bottom of
the screen requesting you to reload the flood model.
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4. To see a graph for flood depths over time at a location, hold CTRL and click the left mouse
button on the area you wish to query.

10.7 Setup for developers

10.7.1 Run single Docker service e.g. database
To run only one isolated service (services defined in docker-compose.yml) use the following
command: docker-compose up --build [-d] [SERVICES]

e.g. To run only the database in detached mode:

docker-compose up --build -d db_postgres

10.7.2 Create Conda environment
Setup a conda environment to allow intelligent code analysis and local development by using the
following command run from the repository folder:

10.7.3 Run Celery locally

This set is recommended, since BG Flood does not yet work on Docker. With the conda environment
activated run:

celery -A src.tasks worker --loglevel=INFO --pool=solo

10.7.4 Running the backend without web interface.

For local testing, it may be useful to use the src.run_all.py script to run the processing.

10.8 Tests
Tests exist in the tests/ folder.

10.8.1 Automated testing

Github Actions are used to run tests after each push to remote (i.e. github). Miniconda from the
GitHub Actions marketplace is used to install the package dependencies. Linting with Flake8 and
testing with PyTest is then performed. Several tests require an API key. This is stored as a GitHub
secret and accessed by the workflow.

10.8.2 Running tests locally
See the geoapis wiki testing page for instructions for setting up a .env file and running the geofabrics
test.

10.9 Vector Database
To store api details of vector data in the database, The following inputs are required:

1. Name of the dataset e.g. 104400-Icdb-v50-land-cover, 101292-nz-building-outlines. Note:
make sure the names are unique.

2. Name of the region which is by default set to New Zealand but can be changed to regions
e.g. Canterbury, Otago, etc. (regions can be further extended to other countries in future)
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3. Geometry column name of the dateset, if required. for instance, for all LDS property and
ownership, street address and geodetic data the geometry column is ‘shape’. For most other
layers including Hydrographic and Topographic data, the column name is ‘GEOMETRY’. For
more info: https://www.linz.govt.nz/data/linz-data-service/guides-and-documentation/wfs-

spatial-filtering

4.  Urli.e website from where the api is accessed.

5. Layer name of the dataset

6. Data provider name. For example: LINZ, LRIS, StatsNZ, etc. For more details on the format
and structure of the inputs check out instructions linz.json

Run run.py file from your IDE: 1. Creating json file

#!/usr/bin/env python
if __name__ == "_main__":
from src.digitaltwin import insert_api_to_table
from src.digitaltwin import setup_environment
engine = setup_environment.get_database()
config.get_env_variable("StatsNZ_API KEY")
# create region_geometry table if it doesn't exist in the db.
# no need to call region_geometry table function if region_geometry table exist 1in the
db
insert_api_to_table.region_geometry_table(engine, Stats_NZ_KEY)

record = input_data("src/instructions_linz.json")
# call the function to insert record in apilinks table
insert_api_to_table.insert_records(engine, record['data_provider'],
record[ 'source'],
record[ "api'], record['region'],
record[ 'geometry column'],
record[ 'url'],
record[ 'layer'])

StatsNZ Api key is only required if the region_geometry table doesn’t exist in the database otherwise
you can skip lines 5-9 of the above script.

This way data will be stored in the database which then will be used to make api requests for the
desired Area of Interest. geometry column’s name, url and layer name are not required if the data
provider is not LINZ, LRIS or StatsNZ:

To get the data from the database:

1. Make sure .env file has the correct information stored in it.

2. The geometry (geopandas dataframe type) and source list (tuple data type) needs to passed
as an argument to get_data_from_db() function. Check testl.json for more details on the
format and structure of the arguments.

3. Runget_data_from_db.py file from your IDE:

#!/usr/bin/env python
if __name__ == "__main__":

from src.digitaltwin import get_data_from_apis

from src.digitaltwin import setup_environment

engine = setup_environment.get_database()

# Lload in the instructions, get the source List and polygon from the user

FILE_PATH = pathlib.Path().cwd() / pathlib.Path(r"P:\GRI codes\DigitalTwin2\src
\test3.json")

with open(FILE_PATH, 'r') as file_pointer:

instructions = json.load(file_pointer)
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source_list = tuple(instructions['source_name'])
geometry = gpd.GeoDataFrame.from_features(instructions["features"])
get_data_from_db(engine, geometry, source_list)

get data_from_db module allows the user to get data from the multiple sources within the required
Area of Interest from the database and if data is not available in the database for the desired area of
Interest, wfs request is made from the stored APIs, data is stored in the database and spatial query is
done within the database to get the data for the desired Area of Interest. Currently data is collected
from LINZ, ECAN, Stats NZ, KiwiRail, LRIS, NIWa and opentopography but will be extended to other
sources.

10.10Raster Database

Hydrologically conditioned DEMs are generated using [geofabrics]
(https://github.com/rosepearson/GeoFabrics) designed by NIWA which downloads the LiDAR data in
the local directory from [opentopography] (https://portal.opentopography.org/dataCatalog) and
generates DEM. These DEMs are stored in the local directory set by the user. The objective of the
dem_metadata_in_db.py script is to store the metadata of the generated DEM in the database for
the requested catchment area. Storing these details in the database helps in getting the DEM already
generated using geofabrics rather than generating DEM for the same catchment, again and again,
saving time and resources. The stored DEM is used to run the Flood model (BG Flood
model)[https://github.com/CyprienBosserelle/BG Flood)] designed by NIWA. The instruction file
used to create hydrologically conditioned DEM is passed to the get_dem_path(instruction) function
which checks if the DEM information exists in the database, if it doesn’t exist, geofabrics is used to
generate the hydrologically conditioned DEM which gets stored in the local directory and the
metadata of the generated DEM is stored in the database and file path of the generated DEM is
returned which is then used to run the flood model.

10.11 LiDAR Database

The data source for the LiDAR data is opentopography. The data for the requested catchment area is
downloaded using geoapis in the local directory set by the user. To store the LiDAR metadata in the
database, lidar_metadata_in_db.py script is used. The instruction file and path to the local directory
where user wants to store the LIDAR data is passed as an argument to
**store_lidar_path(file_path_to_store, instruction_file) function

10.12 Create extensions in PostgreSQL:
1. Install Postgresql and selet PostGIS application to install along with PostgreSQL
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5.  Once the extension is created, spatial_ref_sys table will appear under tables as shown below:

schemas (1)

public
Collations
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" Foreign Tables
Functio
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>
>
>
>
>
>
>
>
>
>
>
-

Tables (1)
v spatial_ref_sys
I Columns
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=) RLS Policies

>

>

> ¢, Indexes
>

> Rules
>

*4 Ti re
»* Triggers

10.12.1 Exploring the database created
1. Run the container in the terminal using bash command, then using psql command to enter
the database:

docker exec -it db_postgres_digital twin bash
psql -U [username]

P:\docker_digitaltwin>docker exec -it 09d97u4db29ul bash

root@09d97udb29ul: /# psql -U postgres

2. By default user will be connected to postgres database. You can change the database using
the command: \c db

3.  We can also check the list of tables stored in our database using the command: \dt

postgres=# \c db
You are now connected to database "db" as user "postgres".

List of relations

public | apilinks | table | postgres
public | region_geometry | table | postgres
public | spatial_ref_sys | table | postgres
(3 rows)

4. To check the data stored in the table: run the command:

select * from region_geometry;
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11 Appendix B: Software licence

All digital twin code is available under an open-source MIT licence (MIT), written below and available
at: https://github.com/GeospatialResearch/Digital-Twins/blob/master/LICENSE

MIT License

© Copyright 2023 Geospatial Research Institute Toi Hangarau

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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12 Appendix C: APl Documentation

The documentation below is autogenerated from the codebase (using sphinx-autoapi). It
provides programmatic details of all API code functions within the digital twin (release 0.1.0). This is
updated as soon as pull requests are landed in the repository. For the latest version, please see:

https://geospatialresearch.github.io/Digital-Twins/
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CHAPTER
ONE

API REFERENCE

This page contains auto-generated API reference documentation'.

1.1 src

1.1.1 Subpackages
1.1.1.1 src.digitaltwin

Submodules
src.digitaltwin.data_to_db

This script fetches geospatial data from various providers using the ‘geoapis’ library and stores it in the database. It
also saves user log information in the database.

! Created with sphinx-autoapi
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Flood Resilience Digital Twin (FReDT), Release 0.1.0

Module Contents

Functions

get_nz_geospatial_layers(— pandas.DataFrame)

get_non_nz_geospatial_layers(—
das.DataFrame)
get_geospatial_layer_info(— Tuple[str, int, str,
str])

get_vector_data_id_not_in_db(— Set[int])

pan-

nz_geospatial_layers_data_to_db(— None)

get_non_intersection_area_from_db(— geopan-
das.GeoDataFrame)
process_new_non_nz_geospatial_layers(—
None)

process_existing_non_nz_geospatial_layers(—

None)
non_nz_geospatial_layers_data_to_db(—
None)

store_geospatial_layers_data_to_db(— None)

user_log_info_to_db(— None)

Retrieve geospatial layers from the database that have a
coverage area of New Zealand.

Retrieve geospatial layers from the database that do not
have a coverage area of New Zealand.

Extracts geospatial layer information from a single layer
entry.

Get the IDs from the fetched vector_data that are not
present in the specified database table

Fetches New Zealand geospatial layers data using
'geoapis' and stores it into the database.

Get the non-intersecting area from the catchment area
and user log information table in the database

Fetches new non-NZ geospatial layers data using
'geoapis' and stores it into the database.

Fetches existing non-NZ geospatial layers data using
'geoapis' and stores it into the database.

Fetches non-NZ geospatial layers data using 'geoapis’
and stores it into the database.

Fetches geospatial layers data using 'geoapis' and stores
it into the database.

Store user log information to the database.

Attributes

log

src.digitaltwin.data_to_db.log

exception src.digitaltwin.data_to_db.NoNonIntersectionError

Bases: Exception

Exception raised when no non-intersecting area is found.

src.digitaltwin.data_to_db.get_nz_geospatial_layers(engine: sqlalchemy.engine.Engine) —

pandas.DataFrame

Retrieve geospatial layers from the database that have a coverage area of New Zealand.

Parameters

engine (Engine) — The engine used to connect to the database.

Returns

Data frame containing geospatial layers that have a coverage area of New Zealand.

Return type
pd.DataFrame
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src.digitaltwin.data_to_db.get_non_nz_geospatial_layers(engine: sqlalchemy.engine.Engine) —
pandas.DataFrame

Retrieve geospatial layers from the database that do not have a coverage area of New Zealand.

Parameters
engine (Engine) — The engine used to connect to the database.

Returns
Data frame containing geospatial layers that do not have a coverage area of New Zealand.

Return type
pd.DataFrame

src.digitaltwin.data_to_db.get_geospatial_layer_info(layer_row: pandas.Series) — Tuple[str, int, str,
str]

Extracts geospatial layer information from a single layer entry.

Parameters
layer_row (pd. Series) — A geospatial layer row that represents a single geospatial layer along
with its associated information.

Returns
A tuple containing the values for data_provider, layer_id, table_name, and unique_column_name.

Return type
Tuple[str, int, str, str]

src.digitaltwin.data_to_db.get_vector_data_id_not_in_db(engine: sqlalchemy.engine.Engine,
vector_data: geopandas.GeoDataFrame,
table_name: str, unique_column_name:
Str, area_of_interest:
geopandas.GeoDataFrame) — Set[int]

Get the IDs from the fetched vector_data that are not present in the specified database table for the area of interest.
Parameters
* engine (Engine) — The engine used to connect to the database.
* vector_data (gpd. GeoDataFrame)— A GeoDataFrame containing the fetched vector data.
e table_name (str)— The name of the table in the database.
* unique_column_name (str) — The name of the unique column in the table.

» area_of_interest (gpd. GeoDataFrame) — A GeoDataFrame representing the area of in-
terest.

Returns
The set of IDs from the fetched vector_data that are not present in the specified table in the
database.

Return type
Set[int]

src.digitaltwin.data_to_db.nz_geospatial_layers_data_to_db(engine: sqlalchemy.engine.Engine, crs:
int = 2193, verbose: bool = False) —
None

Fetches New Zealand geospatial layers data using ‘geoapis’ and stores it into the database.
Parameters

* engine (Engine) — The engine used to connect to the database.
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* crs (int = 2193) — The coordinate reference system (CRS) code to use. Default is 2193.
» verbose (bool = False)— Whether to print messages. Default is False.

Returns
This function does not return any value.

Return type
None

src.digitaltwin.data_to_db.get_non_intersection_area_from_db(engine: sqlalchemy.engine.Engine,
catchment_area:
geopandas.GeoDataFrame,
table_name: str) —
geopandas.GeoDataFrame

Get the non-intersecting area from the catchment area and user log information table in the database for the
specified table.

Parameters
* engine (Engine) — The engine used to connect to the database.

» catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

* table_name (str)— The name of the table in the database.

Returns
The non-intersecting area, or the original catchment area if no intersections are found.

Return type
gpd.GeoDataFrame

Raises
NoNonIntersectionError — If the non-intersecting area is empty, it suggests that the catch-
ment area is already fully covered.

src.digitaltwin.data_to_db.process_new_non_nz_geospatial_layers(engine:
sqglalchemy.engine.Engine,
data_provider: str, layer_id: int,
table_name: str,
area_of _interest:
geopandas.GeoDataFrame, crs:
int = 2193, verbose: bool =
False) — None

Fetches new non-NZ geospatial layers data using ‘geoapis’ and stores it into the database.
Parameters
* engine (Engine) — The engine used to connect to the database.
» data_provider (str) — The data provider of the geospatial layer.
e layer_id (int) — The ID of the geospatial layer.
* table_name (str)— The database table name of the geospatial layer.

» area_of_interest (gpd. GeoDataFrame) — A GeoDataFrame representing the area of in-
terest.

e crs (int = 2193) — The coordinate reference system (CRS) code to use. Default is 2193.

» verbose (bool = False)— Whether to print messages. Default is False.
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Returns
This function does not return any value.

Return type
None

src.digitaltwin.data_to_db.process_existing_non_nz_geospatial_layers(engine:
sqlalchemy.engine.Engine,
data_provider: str,
layer_id: int, table_name:
str, unique_column_name:
str, area_of _interest:
geopan-
das.GeoDataFrame, crs:
int = 2193, verbose: bool
= False) — None

Fetches existing non-NZ geospatial layers data using ‘geoapis’ and stores it into the database.
Parameters
* engine (Engine) — The engine used to connect to the database.
» data_provider (str) — The data provider of the geospatial layer.
e layer_id (int) — The ID of the geospatial layer.
* table_name (str)— The database table name of the geospatial layer.

* unique_column_name (str) — The unique column name used for record identification in
the database table.

* area_of_interest (gpd. GeoDataFrame) — A GeoDataFrame representing the area of in-
terest.

* crs (int = 2193) — The coordinate reference system (CRS) code to use. Default is 2193.
» verbose (bool = False)— Whether to print messages. Default is False.

Returns
This function does not return any value.

Return type
None

src.digitaltwin.data_to_db.non_nz_geospatial_layers_data_to_db(engine:
sqlalchemy.engine.Engine,
catchment_area:
geopandas.GeoDataFrame, crs:
int = 2193, verbose: bool =
False) — None

Fetches non-NZ geospatial layers data using ‘geoapis’ and stores it into the database.
Parameters
* engine (Engine) — The engine used to connect to the database.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

e crs (int = 2193) — The coordinate reference system (CRS) code to use. Default is 2193.

» verbose (bool = False)— Whether to print messages. Default is False.
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Returns
This function does not return any value.

Return type
None

src.digitaltwin.data_to_db.store_geospatial_layers_data_to_db(engine: sqlalchemy.engine.Engine,
catchment_area:
geopandas.GeoDataFrame, crs: int
= 2193, verbose: bool = False) —
None

Fetches geospatial layers data using ‘geoapis’ and stores it into the database.
Parameters
* engine (Engine) — The engine used to connect to the database.

e catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

e crs (int = 2193) — The coordinate reference system (CRS) code to use. Default is 2193.
» verbose (bool = False)- Whether to print messages. Default is False.

Returns
This function does not return any value.

Return type
None

src.digitaltwin.data_to_db.user_log_info_to_db(engine: sqlalchemy.engine.Engine, catchment_area:
geopandas.GeoDataFrame) — None

Store user log information to the database.
Parameters
* engine (Engine) — The engine used to connect to the database.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

Returns
This function does not return any value.

Return type
None

src.digitaltwin.get_data_using_geoapis

This script provides functions to retrieve vector data from multiple providers, including StatsNZ, LINZ, LRIS, and
MEFE, using the ‘geoapis’ library. To access data from each provider, you’ll need to set an API key in the environment
variables.
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Module Contents

Classes
MFE A class to manage fetching Vector data from MFE.
Functions
clean_fetched_vector_data(— geopan- Clean the fetched vector data by performing necessary
das.GeoDataFrame) transformations.
fetch_vector_data_using_geoapis(—  geopan- Fetch vector data using 'geoapis' based on the specified
das.GeoDataFrame) data provider, layer ID, and other parameters.

class src.digitaltwin.get_data_using_geoapis.MFE
Bases: geoapis.vector.WfsQueryBase

A class to manage fetching Vector data from MFE.
General details at: https://data.mfe.govt.nz/ API details at: https://help.koordinates.com/

Note that the ‘GEOMETRY_NAMES’ used when making WES ‘cql_filter’ queries varies between layers. The
MEE generally follows the LINZ LDS but uses ‘Shape’ in place of ‘shape’. It still uses ‘GEOMETRY".

NETLOC_API = 'data.mfe.govt.nz'
GEOMETRY_NAMES = ['GEOMETRY', 'Shape']

src.digitaltwin.get_data_using_geoapis.clean_fetched_vector_data(ferched_data:
geopandas.GeoDataFrame) —
geopandas.GeoDataFrame

Clean the fetched vector data by performing necessary transformations.

Parameters
fetched_data (gpd. GeoDataFrame) — A GeoDataFrame containing the fetched vector data.

Returns
A GeoDataFrame containing the cleaned vector data.

Return type
gpd.GeoDataFrame

src.digitaltwin.get_data_using_geoapis.fetch_vector_data_using_geoapis(data_provider: str,
layer_id: int, crs: int =
2193, verbose: bool =
False,
bounding_polygon:
geopan-
das.GeoDataFrame |
None = None) —
geopandas.GeoDataFrame

Fetch vector data using ‘geoapis’ based on the specified data provider, layer ID, and other parameters.

Parameters
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» data_provider (str) — The data provider to use. Supported values: “StatsNZ”, “LINZ”,

“LRIS”, “MFE”.

* layer_id (int) — The ID of the layer to fetch.

* crs (int = 2193) — The coordinate reference system (CRS) code to use. Default is 2193.

» verbose (bool = False)— Whether to print messages. Default is False.

* bounding_polygon (Optional [gpd.GeoDataFrame] = None)— Bounding polygon for
data fetching. Default is all of New Zealand.

Returns

A GeoDataFrame containing the fetched vector data.

Return type
gpd.GeoDataFrame

Raises

ValueError - If an unsupported ‘data_provider’ value is provided.

src.digitaltwin.instructions_records_to_db

This script processes ‘instructions_run’ records, validates URLs and instruction fields, and stores them in the ‘geospa-

tial_layers’ table of the database.

Module Contents

Functions

validate_url_reachability(— None)

validate_instruction_fields(— None)

read_and_check_instructions_file(— pan-
das.DataFrame)
get_existing_geospatial_layers(— pan-

das.DataFrame)
get_non_existing_records(— pandas.DataFrame)

store_instructions_records_to_db(— None)

Validate the URL by checking its format and reachabil-
ity.

Validate the fields of an instruction.

Read and check the instructions_run file, validating
URLS and instruction fields.

Retrieve existing geospatial layers from the 'geospa-
tial_layers' table.

Get 'instructions_run' records that are not available in the
database.

Store 'instructions_run' records in the 'geospatial_layers'
table in the database.

Attributes

log

src.digitaltwin.instructions_records_to_db.log
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src.digitaltwin.instructions_records_to_db.validate_url_reachability(section: str, url: str) —
None

Validate the URL by checking its format and reachability.
Parameters
» section (str) — The section identifier of the instruction.
e url (str) - The URL to validate.

Returns
This function does not return any value.

Return type
None

Raises
ValueError —

e If the URL is invalid.
¢ If the URL is unreachable.

src.digitaltwin.instructions_records_to_db.validate_instruction_fields(section: str,
instruction: Dict[str, str
| int]) — None

Validate the fields of an instruction. Each instruction should provide either ‘coverage_ area’ or
‘unique_column_name’, but not both.

Parameters
e section (str) — The section identifier of the instruction.
e instruction (Dict[str, Union[str, int]])- The instruction details.

Returns
This function does not return any value.

Return type
None

Raises
ValueError —

* If both ‘coverage_area’ and ‘unique_column_name’ are provided.
* If both ‘coverage_area’ and ‘unique_column_name’ are not provided.

src.digitaltwin.instructions_records_to_db.read_and_check_instructions_file() —
pandas.DataFrame

Read and check the instructions_run file, validating URLs and instruction fields.

Returns
The processed instructions DataFrame.

Return type
pd.DataFrame

src.digitaltwin.instructions_records_to_db.get_existing_geospatial_layers(engine:
sqlalchemy.engine.Engine)
%
pandas.DataFrame

Retrieve existing geospatial layers from the ‘geospatial_layers’ table.
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Parameters
engine (Engine) — The engine used to connect to the database.

Returns
Data frame containing the existing geospatial layers.

Return type
pd.DataFrame

src.digitaltwin.instructions_records_to_db.get_non_existing_records (instructions_df:
pandas.DataFrame,
existing_layers_df:
pandas.DataFrame) —
pandas.DataFrame

Get ‘instructions_run’ records that are not available in the database.

Parameters

e instructions_df (pd.DataFrame) — Data frame containing the ‘instructions_run’
records.

» existing_layers_df (pd.DataFrame) — Data frame containing the existing ‘instruc-

tions_run’ records from the database.

Returns
Data frame containing the ‘instructions_run’ records that are not available in the database.

Return type
pd.DataFrame

src.digitaltwin.instructions_records_to_db.store_instructions_records_to_db(engine:

sqlalchemy.engine.Engine)
— None

Store ‘instructions_run’ records in the ‘geospatial_layers’ table in the database.

Parameters
engine (Engine) — The engine used to connect to the database.

Returns
This function does not return any value.

Return type
None

src.digitaltwin.run

This script automates the retrieval and storage of geospatial data from various providers using the ‘geoapis’ library. It
populates the ‘geospatial_layers’ table in the database and stores user log information for tracking and reference.
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Module Contents

Functions
main(— None) Connects to various data providers to fetch geospatial
data for the selected polygon, i.e., the catchment area.
Attributes

sample_polygon

src.digitaltwin.run.main(selected_polygon_gdf: geopandas.GeoDataFrame, log_level:
src.digitaltwin.utils.LogLevel = LogLevel DEBUG) — None

Connects to various data providers to fetch geospatial data for the selected polygon, i.e., the catchment area.
Subsequently, it populates the ‘geospatial_layers’ table in the database and stores user log information for tracking
and reference.

Parameters

» selected_polygon_gdf (gpd.GeoDataFrame) — A GeoDataFrame representing the se-
lected polygon, i.e., the catchment area.

* log_level (LoglLevel = LogLevel.DEBUG) — The log level to set for the root logger.
Defaults to LogLevel. DEBUG. The available logging levels and their corresponding numeric
values are: - LogLevel. CRITICAL (50) - LogLevel. ERROR (40) - LogLevel WARNING
(30) - LogLevel.INFO (20) - LogLevel. DEBUG (10) - LogLevel. NOTSET (0)

Returns
This function does not return any value.

Return type
None

src.digitaltwin.run.sample_polygon

src.digitaltwin.setup_environment

This script provides functions to set up the database connection using SQLAlchemy and environment variables, as well
as to create an SQLAIchemy engine for database operations.
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Module Contents

Functions

get_database(— sqlalchemy.engine.Engine) Set up the database connection. Exit the program if con-

nection fails.

get_connection_from_profile(— Sets up database connection from configuration.

sqlalchemy.engine.Engine)

get_engine(— sqlalchemy.engine.Engine) Get SQLAIchemy engine using credentials.
Attributes

log

Base

src.digitaltwin.setup_environment.log

src.digitaltwin.setup_environment.Base

src.digitaltwin.setup_environment.get_database() — sqlalchemy.engine.Engine
Set up the database connection. Exit the program if connection fails.

Returns
The engine used to connect to the database.

Return type
Engine

Raises
OperationalError — If the connection to the database fails.

src.digitaltwin.setup_environment.get_connection_from_profile() — sqlalchemy.engine.Engine

Sets up database connection from configuration.

Returns
The engine used to connect to the database.

Return type
Engine

Raises
ValueError - If one or more connection credentials are missing in the .env file.

src.digitaltwin.setup_environment.get_engine (host: str, port: str,db: str, username: str, password: str)
— sqlalchemy.engine.Engine

Get SQLAIchemy engine using credentials.
Parameters
e host (str) — Hostname of the database server.

e port (str) — Port number.
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e db (str) — Database name.
e username (str)— Username.
e password (str) — Password for the database.

Returns
The engine used to connect to the database.

Return type
Engine
src.digitaltwin.tables

This script contains SQLAlIchemy models for various database tables and utility functions for database operations.

Module Contents

Classes
GeospatialLayers Class representing the 'geospatial_layers' table.
UserLogInfo Class representing the 'user_log_information' table.
RiverNetworkExclusions Class representing the 'recl_network_exclusions' table.
RiverNetworkOutput Class representing the 'rec1_network_output' table.
BGFloodModelOutput Class representing the 'bg_flood_model_output' table.
BuildingFloodStatus
Functions
create_table(— None) Create a table in the database if it doesn't already exist,
using the provided engine.
check_table_exists(— bool) Check if a table exists in the database.
execute_query(— None) Execute the given query on the provided engine using a
session.
Attributes
Base

src.digitaltwin.tables.Base

class src.digitaltwin.tables.GeospatialLayers

Bases: Base

Class representing the ‘geospatial_layers’ table.
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__tablename__
Name of the database table.

Type
str

unique_id

Unique identifier for each geospatial layer entry (primary key).

Type
int

data_provider
Name of the data provider.

Type
str

layer_id
Identifier for the layer.

Type
int
table_name

Name of the table containing the data.

Type

str

unique_column_name

Name of the unique column in the table.

Type
Optional[str]

coverage_area

Coverage area of the geospatial data, e.g. ‘New Zealand’.

Type
Optional[str]

url
URL pointing to the geospatial layer.

Type

str

__tablename__ = 'geospatial_layers'
unique_id

data_provider

layer_id

table_name

unique_column_name

coverage_area

14

Chapter 1. API Reference



Flood Resilience Digital Twin (FReDT), Release 0.1.0

url

class src.digitaltwin.tables.UserLogInfo

Bases: Base
Class representing the ‘user_log_information’ table.

__tablename__
Name of the database table.

Type

str
unique_id
Unique identifier for each log entry (primary key).

Type
int

source_table_list
A list of tables (geospatial layers) associated with the log entry.
Type
Dict|[str]

created_at

Timestamp indicating when the log entry was created.

Type
datetime

geometry

Geometric representation of the catchment area coverage.

Type
Polygon
__tablename__ = 'user_log_information'
unique_id

source_table_list
created_at
geometry
class src.digitaltwin.tables.RiverNetworkExclusions
Bases: Base
Class representing the ‘recl_network_exclusions’ table.
__tablename__
Name of the database table.

Type

str
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recl_network_id

An identifier for the river network associated with each new run.

Type

int
objectid
An identifier for the REC1 river object matching from the ‘rec1_data’ table.

Type
int

exclusion_cause

Cause of exclusion, i.e., the reason why the REC1 river geometry was excluded.

Type

str

geometry
Geometric representation of the excluded RECI1 river features.

Type
LineString

__tablename__ = 'recl_network_exclusions'
recl_network_id
objectid
exclusion_cause
geometry
__table_args__ = O
class src.digitaltwin.tables.RiverNetworkOutput
Bases: Base

Class representing the ‘recl_network_output’ table.

__tablename__
Name of the database table.

Type

str
recl_network_id

An identifier for the river network associated with each new run (primary key).

Type
int

network_path
Path to the REC1 river network file.

Type

str
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network_data_path
Path to the RECI river network data file.

Type

str
created_at

Timestamp indicating when the output was created.

Type
datetime

geometry

Geometric representation of the catchment area coverage.

Type
Polygon

__tablename__ = 'recl_network_output’
recl_network_id
network_path
network_data_path
created_at
geometry
class src.digitaltwin.tables.BGFloodModelOutput
Bases: Base
Class representing the ‘bg_flood_model_output’ table.
__tablename__
Name of the database table.

Type
str

unique_id

Unique identifier for each entry (primary key).

Type
int
file_name
Name of the flood model output file.

Type
str

file_path
Path to the flood model output file.

Type

str
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created_at

Timestamp indicating when the output was created.

Type

datetime

geometry

Geometric representation of the catchment area coverage.

Type
Polygon

__tablename__ = 'bg_flood_model_output'
unique_id
file_name
file_path
created_at
geometry
class src.digitaltwin.tables.BuildingFloodStatus

Bases: Base
__tablename__ = 'building_flood_status'
unique_id
building_outline_id
is_flooded
flood_model_id
src.digitaltwin.tables.create_table(engine: sqlalchemy.engine.Engine, table: Base) — None

Create a table in the database if it doesn’t already exist, using the provided engine.

Parameters

* engine (Engine) — The engine used to connect to the database.

* table (Base) — Class representing the table to create.

Returns
This function does not return any value.

Return type
None

src.digitaltwin.tables.check_table_exists(engine: sqlalchemy.engine.Engine, table_name: str, schema:
str = 'public’) — bool

Check if a table exists in the database.
Parameters
* engine (Engine) — The engine used to connect to the database.

e table_name (str)— The name of the table to check for existence.
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e schema (str = "public")— The name of the schema where the table resides. Defaults to

“public”.

Returns
True if the table exists, False otherwise.

Return type
bool

src.digitaltwin.tables.execute_query(engine: sqlalchemy.engine.Engine, query) — None

Execute the given query on the provided engine using a session.

Parameters

* engine (Engine) — The engine used to connect to the database.

* query — The query to be executed.

Returns
This function does not return any value.

Return type
None

Raises

Exception - If an error occurs during the execution of the query.

src.digitaltwin.utils

This script provides utility functions for logging configuration and geospatial data manipulation.

Module Contents

Classes
LogLevel Enum class representing different logging levels mapped
to their corresponding numeric values from the
Functions

log_execution_info(— None)
setup_logging(— None)
get_catchment_area(— geopandas.GeoDataFrame)

get_nz_boundary(— geopandas.GeoDataFrame)

Logs a debug message indicating the execution of the
function in the script.

Configures the root logger with the specified log level
and formats, captures warnings, and excludes specific
Convert the coordinate reference system (CRS) of the
catchment area GeoDataFrame to the specified CRS.
Get the boundary of New Zealand in the specified Coor-
dinate Reference System (CRS).
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Attributes

log

src.digitaltwin.utils.log

class src.digitaltwin.utils.LogLevel

Bases: enum.IntEnum

Enum class representing different logging levels mapped to their corresponding numeric values from the logging

library.
CRITICAL
The critical logging level. Corresponds to logging. CRITICAL (50).

Type
int
ERROR
The error logging level. Corresponds to logging. ERROR (40).

Type
int

WARNING

The warning logging level. Corresponds to logging. WARNING (30).

Type

int
INFO
The info logging level. Corresponds to logging.INFO (20).

Type
int

DEBUG
The debug logging level. Corresponds to logging. DEBUG (10).

Type

int
NOTSET
The not-set logging level. Corresponds to logging. NOTSET (0).

Type
int

CRITICAL
ERROR
WARNING
INFO

DEBUG
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NOTSET

src.digitaltwin.utils.log_execution_info() — None
Logs a debug message indicating the execution of the function in the script.

Returns
This function does not return any value.

Return type
None

src.digitaltwin.utils.setup_logging(log_level: Loglevel = LogLevel DEBUG) — None

Configures the root logger with the specified log level and formats, captures warnings, and excludes specific
loggers from propagating their messages to the root logger. Additionally, logs a debug message indicating the

execution of the function in the script.

Parameters
log_level (LogLevel = LogLevel.DEBUG) — The log level to set for the root logger. De-

faults to LogLevel. DEBUG. The available logging levels and their corresponding numeric val-
ues are: - LogLevel. CRITICAL (50) - LogLevel. ERROR (40) - Loglevel. WARNING (30) -

LogLevelINFO (20) - LogLevel. DEBUG (10) - LogLevel NOTSET (0)

Returns
This function does not return any value.

Return type
None

src.digitaltwin.utils.get_catchment_area(catchment_area: geopandas.GeoDataFrame, to_crs: int =
2193) — geopandas.GeoDataFrame

Convert the coordinate reference system (CRS) of the catchment area GeoDataFrame to the specified CRS.

Parameters
* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.
* to_crs(int = 2193)- Coordinate Reference System (CRS) code to convert the catchment
area to. Default is 2193.

Returns
A GeoDataFrame representing the catchment area with the transformed CRS.

Return type
gpd.GeoDataFrame

src.digitaltwin.utils.get_nz_boundary(engine: sqlalchemy.engine.Engine, to_crs: int =2193) —
geopandas.GeoDataFrame

Get the boundary of New Zealand in the specified Coordinate Reference System (CRS).

Parameters
* engine (Engine) — The engine used to connect to the database.
* to_crs (int = 2193) — Coordinate Reference System (CRS) code to which the boundary
will be converted. Default is 2193.

Returns
A GeoDataFrame representing the boundary of New Zealand in the specified CRS.

Return type
gpd.GeoDataFrame
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1.1.1.2 src.dynamic_boundary_conditions

Subpackages

src.dynamic_boundary_conditions.rainfall

Submodules

src.dynamic_boundary_conditions.rainfall.hirds_rainfall_data_from_db

Retrieve all rainfall data for sites within the catchment area from the database.

Module Contents

Functions
filter_ for_duration(— pandas.DataFrame) Filter the HIRDS rainfall data for a requested duration.
get_one_site_rainfall_data(— pan-  Get the HIRDS rainfall data for the requested site from
das.DataFrame) the database and return the required data in
rainfall_data_from_db(— pandas.DataFrame) Get rainfall data for the sites within the catchment area

and return it as a Pandas DataFrame.

src.dynamic_boundary_conditions.rainfall.hirds_rainfall_data_from_db.filter_for_duration(rain_data:

pan-
das.DataFrame,
du-

ra-

tion:

Str)

N
pandas.DataFrame

Filter the HIRDS rainfall data for a requested duration.
Parameters
e rain_data (pd.DataFrame) — HIRDS rainfall data in Pandas DataFrame format.

* duration (str) — Storm duration. Valid options are: ‘10m’, ‘20m’, ‘30m’, ‘1h’, ‘2h’, ‘6h’,
‘12k, ‘24h’, “48k’, “72h’, ‘96h’, ‘120h’, or “all’.
Returns
Filtered rainfall data for the requested duration.

Return type
pd.DataFrame
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src.dynamic_boundary_conditions.rainfall.hirds_rainfall_data_from_db.get_one_site_rainfall_data(engine:

sqlalchen
site_id:
Str,

rep:

floa

|

None,
time_peri
str

|

None,
ari:

float,

du-

ra-

tion:

Str,

idf:

bool)

s
pandas.D

Get the HIRDS rainfall data for the requested site from the database and return the required data in Pandas
DataFrame format.

Parameters
* engine (Engine) — The engine used to connect to the database.
e site_id (str)— HIRDS rainfall site ID.

» rcp (Optional [float]) — Representative Concentration Pathway (RCP) value. Valid op-
tions are 2.6, 4.5, 6.0, 8.5, or None for historical data.

* time_period (Optional[str]) — Future time period. Valid options are “2031-20507,
“2081-2100”, or None for historical data.

e ari (float) — Average Recurrence Interval (ARI) value. Valid options are 1.58, 2, 5, 10,
20, 30, 40, 50, 60, 80, 100, or 250.

* duration (str) — Storm duration. Valid options are: ‘10m’, ‘20m’, ‘30m’, ‘1h’, ‘2h’, ‘6h’,
‘12, <24k, 48h’, “72h’, ‘96h’, ‘120h’, or “all’.

» idf (bool) — Set to False for rainfall depth data, and True for rainfall intensity data.

Returns
HIRDS rainfall data for the requested site and parameters.

Return type
pd.DataFrame

Raises
ValueError - If rcp and time_period arguments are inconsistent.
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src.dynamic_boundary_conditions.rainfall.hirds_rainfall_data_from_db.rainfall_data_from_db(engine:

sqlalchemy.engi
sites_in_catchm
geopan-
das.GeoDataFr
rep:

floa

|

None,
time_period:

str

|

None,

ari:

float,

idf:

bool

False,
du-
ra-
tion:
Str

‘all)
H
pandas.DataFrar

Get rainfall data for the sites within the catchment area and return it as a Pandas DataFrame.

Parameters

Returns

engine (Engine) — The engine used to connect to the database.

sites_in_catchment (gpd.GeoDataFrame) — Rainfall sites coverage areas (Thiessen
polygons) within the catchment area.

rcp (Optional [float]) — Representative Concentration Pathway (RCP) value. Valid op-
tions are 2.6, 4.5, 6.0, 8.5, or None for historical data.

time_period (Optional[str]) — Future time period. Valid options are “2031-20507,
“2081-2100”, or None for historical data.

ari (float) — Average Recurrence Interval (ARI) value. Valid options are 1.58, 2, 5, 10,
20, 30, 40, 50, 60, 80, 100, or 250.

idf (bool = False) — Set to False for rainfall depth data, and True for rainfall intensity
data.

duration (str = "all")- Storm duration. Valid options are: ‘10m’, ‘20m’, ‘30m’, ‘1h’,
2h’, ‘6h’, ‘12h’, ‘24h’, ‘48h’, “72h’, ‘96h’, ‘120h’, or ‘all’. Default is ‘all’.

A DataFrame containing the rainfall data for the sites within the catchment area.

Return type
pd.DataFrame
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src.dynamic_boundary_conditions.rainfall.hirds_rainfall_data_to_db

Store the rainfall data for all the sites within the catchment area in the database.

Module Contents

Functions
db_rain_table_name(—> str) Return the relevant rainfall data table name used in the
database.
get_sites_id_in_catchment(— List[str]) Get the rainfall site IDs within the catchment area.
get_sites_id _not_in_db(— List[str]) Get the list of rainfall site IDs that are within the catch-
ment area but not in the database.
add_rainfall_data_to_db(— None) Store the rainfall data for a specific site in the database.
add_each_site_rainfall_data(— None) Add rainfall data for each site in the sites_id_list to the
database.
rainfall_data_to_db(— None) Store rainfall data of all the sites within the catchment
area in the database.
Attributes
log

src.dynamic_boundary_conditions.rainfall.hirds_rainfall_data_to_db.log

src.dynamic_boundary_conditions.rainfall.hirds_rainfall_data_to_db.db_rain_table_name (idf:
bool)
N
str

Return the relevant rainfall data table name used in the database.

Parameters
idf (bool) — Set to False for rainfall depth data, and True for rainfall intensity data.

Returns
The relevant rainfall data table name.

Return type
str

src.dynamic_boundary_conditions.rainfall.hirds_rainfall _data_to_db.get_sites_id_in_catchment (sites_in_catcl
geopan-
das.GeoData
%
List[str]

Get the rainfall site IDs within the catchment area.
Parameters

sites_in_catchment (gpd.GeoDataFrame) — Rainfall site coverage areas (Thiessen poly-
gons) that intersect or are within the catchment area.
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Returns
The rainfall site IDs within the catchment area.

Return type
List[str]

src.dynamic_boundary_conditions.rainfall.hirds_rainfall_data_to_db.get_sites_id_not_in_db(engine:
sqlalchemy.engin
sites_id_in_catch
List[str],
idf:
bool)
%
List[str]

Get the list of rainfall site IDs that are within the catchment area but not in the database.
Parameters
* engine (Engine) — The engine used to connect to the database.
e sites_id_in_catchment (List[str])— Rainfall site IDs within the catchment area.
» idf (bool) — Set to False for rainfall depth data, and True for rainfall intensity data.

Returns
The rainfall site IDs within the catchment area but not present in the database.

Return type
List[str]

src.dynamic_boundary_conditions.rainfall.hirds_rainfall_data_to_db.add_rainfall_data_to_db(engine:
sqlalchemy.engi
site_id:
str,
idf:
bool)
_>
None

Store the rainfall data for a specific site in the database.
Parameters
* engine (Engine) — The engine used to connect to the database.
e site_id (str)— HIRDS rainfall site ID.
e idf (bool) — Set to False for rainfall depth data, and True for rainfall intensity data.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.rainfall.hirds_rainfall_data_to_db.add_each_site_rainfall_data(engine:
sqlalchem)
sites_id_li
List[str],
idf:
bool)
_)
None
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Add rainfall data for each site in the sites_id_list to the database.
Parameters
* engine (Engine) — The engine used to connect to the database.
e sites_id_list (List[str]) - List of rainfall sites’ IDs.
* idf (bool) — Set to False for rainfall depth data, and True for rainfall intensity data.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.rainfall.hirds_rainfall_data_to_db.rainfall_data_to_db(engine:
sqlalchemy.engine.Er
sites_in_catchment:
geopan-
das.GeoDataFrame,
idf:
bool

False)
_>
None

Store rainfall data of all the sites within the catchment area in the database.
Parameters
* engine (Engine) — The engine used to connect to the database.

* sites_in_catchment (gpd.GeoDataFrame) — Rainfall sites coverage areas (Thiessen
polygons) that intersect or are within the catchment area.

e idf (bool = False) — Set to False for rainfall depth data, and True for rainfall intensity
data.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.rainfall.hyetograph

Get hyetograph data and generate interactive hyetograph plots for sites located within the catchment area.
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Module Contents

Functions

get_transposed_data(— pandas.DataFrame)

get_interpolated_data(— pandas.DataFrame)

get_interp_incremental_data(— pan-
das.DataFrame)
get_storm_length_increment_data(— pan-

das.DataFrame)
add_time_information(— pandas.DataFrame)

transform_data_for_selected_method(— pan-
das.DataFrame)

hyetograph_depth_to_intensity(— pan-
das.DataFrame)

get_hyetograph_data(— pandas.DataFrame)
hyetograph_data_wide_to_long(— pan-

das.DataFrame)
hyetograph(— None)

Clean and transpose the retrieved scenario data from the
database for sites within the catchment area and
Perform temporal interpolation on the transposed sce-
nario data for sites within the catchment area and

Get the incremental rainfall depths (difference between
current and preceding cumulative rainfall)

Get the incremental rainfall depths for sites within the
catchment area for a specific storm duration.

Add time information (seconds, minutes, and hours col-
umn) to the hyetograph data based on the

Transform the storm length incremental rainfall depths
for sites within the catchment area based on

Convert hyetograph depths data to hyetograph intensities
data for all sites within the catchment area.

Get hyetograph intensities data for all sites within the
catchment area and return it in Pandas DataFrame for-
mat.

Transform hyetograph intensities data for all sites within
the catchment area from wide format to long format.
Create interactive individual hyetograph plots for sites
within the catchment area.

src.dynamic_boundary_conditions.rainfall.hyetograph.get_transposed_data(rain_depth_in_catchment:

pandas.DataFrame)
— pandas.DataFrame

Clean and transpose the retrieved scenario data from the database for sites within the catchment area and return

it in transposed Pandas DataFrame format.

Parameters

rain_depth_in_catchment (pd.DataFrame) — Rainfall depths for sites within the catchment
area for a specified scenario retrieved from the database.

Returns

A DataFrame containing the cleaned and transposed scenario data.

Return type
pd.DataFrame

src.dynamic_boundary_conditions.rainfall.hyetograph.get_interpolated_data(transposed_catchment_data:

pandas.DataFrame,
increment_mins:
int, interp_method:
str) —
pandas.DataFrame

Perform temporal interpolation on the transposed scenario data for sites within the catchment area and return it

in Pandas DataFrame format.

Parameters
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* transposed_catchment_data (pd.DataFrame) — Transposed scenario data retrieved
from the database.

e increment_mins (int) — Time interval in minutes.

* interp_method (str) — Temporal interpolation method to be used. Refer to
‘scipy.interpolate.interpld()’ for available methods. One of ‘linear’, ‘nearest’, ‘nearest-up’,
‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, or ‘next’.
Returns
A DataFrame containing the interpolated scenario data.
Return type
pd.DataFrame

Raises
ValueError —

* If the specified ‘increment_mins’ is out of range.

* If the specified ‘interp_method’ is not supported.

src.dynamic_boundary_conditions.rainfall.hyetograph.get_interp_incremental_data(interp_catchment_data:
pan-
das.DataFrame)
%

pandas.DataFrame

Get the incremental rainfall depths (difference between current and preceding cumulative rainfall) for sites within
the catchment area and return it in Pandas DataFrame format.

Parameters

interp_catchment_data (pd.DataFrame) — Interpolated scenario data for sites within the
catchment area.

Returns
A DataFrame containing the incremental rainfall depths.

Return type
pd.DataFrame

src.dynamic_boundary_conditions.rainfall.hyetograph.get_storm_length_increment_data (interp_increment_data:

pan-
das.DataFrame,
storm_length_mins:
int) —
pandas.DataFrame
Get the incremental rainfall depths for sites within the catchment area for a specific storm duration.

Parameters

* interp_increment_data (pd.DataFrame) — Incremental rainfall depths for sites within
the catchment area.

e storm_length_mins (int) — Storm duration in minutes.
Returns

Incremental rainfall depths for sites within the catchment area for the specified storm duration.

Return type
pd.DataFrame
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Raises
ValueError — If the specified ‘storm_length_mins’ is less than the minimum storm duration
available in the data.

src.dynamic_boundary_conditions.rainfall.hyetograph.add_time_information(site_dara:
pandas.DataFrame,
storm_length_mins:

int,
time_to_peak_mins:
int | float,

increment_mins: int,

hyeto_method:
src.dynamic_boundary_conditions.rainf
N

pandas.DataFrame

Add time information (seconds, minutes, and hours column) to the hyetograph data based on the selected hyeto-
graph method.

Parameters
» site_data (pd.DataFrame) — Hyetograph data for a rainfall site or gauge.
e storm_length_mins (int) — Storm duration in minutes.

e time_to_peak_mins (Union[int, float])- The time in minutes when rainfall is at its
greatest (reaches maximum).

e increment_mins (int) — Time interval in minutes.
* hyeto_method (HyetolMethod) — Hyetograph method to be used.

Returns
Hyetograph data with added time information.

Return type
pd.DataFrame

Raises
ValueError - If the specified ‘time_to_peak_mins’ is less than half of the storm duration.

src.dynamic_boundary_conditions.rainfall.hyetograph.transform_data_for_selected_method(interp_increment_da
pan-
das.DataFrame,
storm_length_mins:
int,
time_to_peak_mins:
int
|
float,
in-
cre-
ment_mins:
int,
hyeto_method:
src.dynamic_boundar
-
pandas.DataFrame

Transform the storm length incremental rainfall depths for sites within the catchment area based on the selected
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hyetograph method and return hyetograph depths data for all sites within the catchment area in Pandas DataFrame

format.
Parameters
* interp_increment_data (pd.DataFrame) — Incremental rainfall depths for sites within
the catchment area.
e storm_length_mins (int) — Storm duration in minutes.
e time_to_peak_mins (Union[int, float])- The time in minutes when rainfall is at its
greatest (reaches maximum).
e increment_mins (int) — Time interval in minutes.
* hyeto_method (HyetolMethod) — Hyetograph method to be used.
Returns
Hyetograph depths data for all sites within the catchment area.
Return type
pd.DataFrame
src.dynamic_boundary_conditions.rainfall.hyetograph.hyetograph_depth_to_intensity (hyetograph_depth:
pan-
das.DataFrame,
incre-
ment_mins:
int,

hyeto_method:
src.dynamic_boundary_con
_>

pandas.DataFrame

Convert hyetograph depths data to hyetograph intensities data for all sites within the catchment area.
Parameters

* hyetograph_depth (pd.DataFrame) — Hyetograph depths data for sites within the catch-
ment area.

e increment_mins (int) — Time interval in minutes.
* hyeto_method (HyetoMethod) — Hyetograph method to be used.

Returns
Hyetograph intensities data for all sites within the catchment area.

Return type
pd.DataFrame

src.dynamic_boundary_conditions.rainfall.hyetograph.get_hyetograph_data(rain_depth_in_catchment:
pandas.DataFrame,
storm_length_mins:

int,
time_to_peak_mins:
int | float,

increment_mins: int,

interp_method: str,

hyeto_method:
src.dynamic_boundary_conditions.rainfa
— pandas.DataFrame
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Get hyetograph intensities data for all sites within the catchment area and return it in Pandas DataFrame format.

Parameters

e rain_depth_in_catchment (pd.DataFrame) — Rainfall depths for sites within the catch-
ment area for a specified scenario retrieved from the database.

e storm_length_mins (int) — Storm duration in minutes.

e time_to_peak_mins (Union[int, float])- The time in minutes when rainfall is at its
greatest (reaches maximum).

e increment_mins (int) — Time interval in minutes.

e interp_method (str) - Temporal interpolation method to be used. Refer to
‘scipy.interpolate.interp1d()’ for available methods. One of ‘linear’, ‘nearest’, ‘nearest-up’,
‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, or ‘next’.

* hyeto_method (HyetoMethod) — Hyetograph method to be used.
Returns
Hyetograph intensities data for all sites within the catchment area.

Return type
pd.DataFrame

src.dynamic_boundary_conditions.rainfall.hyetograph.hyetograph_data_wide_to_long(hyetograph_data:
pan-
das.DataFrame)
-
pandas.DataFrame

Transform hyetograph intensities data for all sites within the catchment area from wide format to long format.

Parameters
hyetograph_data (pd.DataFrame) — Hyetograph intensities data for sites within the catch-
ment area.

Returns
Hyetograph intensities data in long format.

Return type
pd.DataFrame

src.dynamic_boundary_conditions.rainfall.hyetograph.hyetograph (hyetograph_data:

pandas.DataFrame, ari: int) —
None

Create interactive individual hyetograph plots for sites within the catchment area.

Parameters

* hyetograph_data (pd.DataFrame) — Hyetograph intensities data for sites within the
catchment area.

e ari (int) — Average Recurrence Interval (ARI) value. Valid options are 1.58, 2, 5, 10, 20,
30, 40, 50, 60, 80, 100, or 250.

Returns
This function does not return any value.

Return type
None
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src.dynamic_boundary_conditions.rainfall.main_rainfall

Main rainfall script used to fetch and store rainfall data in the database, and to generate the requested rainfall model
input for BG-Flood, etc.

Module Contents

Functions
remove_existing_rain_inputs(— None) Remove existing rain input files from the specified direc-
tory.
main(— None) Fetch and store rainfall data in the database, and generate
the requested rainfall model input for BG-Flood.
Attributes

sample_polygon

src.dynamic_boundary_conditions.rainfall.main_rainfall.remove_existing_rain_inputs(bg_flood_dir:
path-
lib.Path)
— None

Remove existing rain input files from the specified directory.

Parameters
bg_flood_dir (pathlib.Path)— BG-Flood model directory containing the rain input files.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.rainfall.main_rainfall.main(selected_polygon_gdf:
geopandas.GeoDataFrame, rcp: float
| None, time_period: str | None, ari:
float, storm_length_mins: int,
time_to_peak_mins: int | float,
increment_mins: int, hyeto_method:
src.dynamic_boundary_conditions.rainfall.rainfall_enum
input_type:
src.dynamic_boundary_conditions.rainfall.rainfall_enum
log_level:
src.digitaltwin.utils.LogLevel =
LogLevel DEBUG) — None

Fetch and store rainfall data in the database, and generate the requested rainfall model input for BG-Flood.

Parameters
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» selected_polygon_gdf (gpd.GeoDataFrame) — A GeoDataFrame representing the se-
lected polygon, i.e., the catchment area.

» rcp (Optional [float]) — Representative Concentration Pathway (RCP) value. Valid op-
tions are 2.6, 4.5, 6.0, 8.5, or None for historical data.

* time_period (Optional[str]) — Future time period. Valid options are ‘“2031-2050”,
“2081-2100”, or None for historical data.

e ari (float) — Average Recurrence Interval (ARI) value. Valid options are 1.58, 2, 5, 10,
20, 30, 40, 50, 60, 80, 100, or 250.

e storm_length_mins (int) — Storm duration in minutes.

e time_to_peak_mins (Union[int, float])— The time in minutes when rainfall is at its
greatest (reaches maximum).

e increment_mins (int) — Time interval in minutes.

* hyeto_method (HyetolMethod) — Hyetograph method to be used. Valid options are
HyetoMethod. ALT_BLOCK or HyetoMethod. CHICAGO.

e input_type (RainInputType) — The type of rainfall model input to be generated. Valid
options are ‘uniform’ or ‘varying’, representing spatially uniform rain input (text file) or
spatially varying rain input (NetCDF file).

* log_level (LoglLevel = LogLevel.DEBUG) — The log level to set for the root logger.
Defaults to LogLevel. DEBUG. The available logging levels and their corresponding numeric
values are: - LogLevel.CRITICAL (50) - LogLeve. ERROR (40) - LogLevel. WARNING
(30) - LogLevel.INFO (20) - LogLevel. DEBUG (10) - LogLeve. NOTSET (0)

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.rainfall.main_rainfall.sample_polygon

src.dynamic_boundary_conditions.rainfall.rainfall_data_from_hirds

Fetch rainfall data from the HIRDS website.

Module Contents

Classes

BlockStructure Represents the layout structure of fetched rainfall data.
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Functions

get_site_url_key(— str) Get the unique URL key of the requested rainfall site
from the HIRDS website.

get_data_from_hirds(— str) Fetch rainfall data for the requested rainfall site from the
HIRDS website.

get_layout_structure_of_data(—> Get the layout structure of the fetched rainfall data.

List[BlockStructure])

convert_to_tabular_data(— pandas.DataFrame) Convert the fetched rainfall data for the requested site

into a Pandas DataFrame.

src.dynamic_boundary_conditions.rainfall.rainfall_data_from_hirds.get_site_url_key (site_id:
str, idf:
bool)
— Str

Get the unique URL key of the requested rainfall site from the HIRDS website.
Parameters
e site_id (str)— HIRDS rainfall site ID.
» idf (bool) — Set to False for rainfall depth data, and True for rainfall intensity data.

Returns
Unique URL key of the requested rainfall site.

Return type
str

src.dynamic_boundary_conditions.rainfall.rainfall_data_from_hirds.get_data_from_hirds(site_id:
Str,
idf:
bool)
%
str

Fetch rainfall data for the requested rainfall site from the HIRDS website.
Parameters
e site_id (str) — HIRDS rainfall site ID.
o idf (bool) - Set to False for rainfall depth data, and True for rainfall intensity data.

Returns
Rainfall data for the requested site as a string.

Return type
str

class src.dynamic_boundary_conditions.rainfall.rainfall_data_from_hirds.BlockStructure
Bases: NamedTuple
Represents the layout structure of fetched rainfall data.
skip_rows

Number of lines to skip at the start of the fetched rainfall site_data.

Type

int
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rcp

There are four different representative concentration pathways (RCPs), and abbreviated as RCP2.6, RCP4.5,
RCP6.0 and RCP8.5, in order of increasing radiative forcing by greenhouse gases, or nan for historical data.

Type
Optional[float]
time_period

Rainfall estimates for two future time periods (e.g. 2031-2050 or 2081-2100) for four RCPs, or None for
historical data.

Type
Optional[str]

category
Historical data, Historical Standard Error or Projections (i.e. hist, hist_stderr or proj).

Type

str

skip_rows: int

rcp: float | None
time_period: str | None
category: str

src.dynamic_boundary_conditions.rainfall.rainfall_data_from_hirds.get_layout_structure_of_data(site_data:
Str)
_>
List[Block:
Get the layout structure of the fetched rainfall data.

Parameters
site_data (str) — Fetched rainfall data text string from the HIRDS website for the requested
rainfall site.

Returns
List of BlockStructure named tuples representing the layout structure of the fetched rainfall data.

Return type
List[BlockStructure]

src.dynamic_boundary_conditions.rainfall.rainfall_data_from_hirds.convert_to_tabular_data(site_data:
Str,
site_id:
str,
block_structure:
Block-
Struc-
ture)
—
pandas.DataFram

Convert the fetched rainfall data for the requested site into a Pandas DataFrame.
Parameters

» site_data (str) — Fetched rainfall data text string from the HIRDS website for the re-
quested rainfall site.
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e site_id (str)— HIRDS rainfall site ID.

* block_structure (BlockStructure) — The layout structure of the fetched rainfall data,
containing skip rows, RCP, time period, and category.

Returns
Rainfall data for the requested site in tabular format.

Return type
pd.DataFrame

src.dynamic_boundary_conditions.rainfall.rainfall_enum

Enum(s) used in the rainfall module.

Module Contents

Classes
HyetoMethod Enum class representing different hyetograph methods.
RainInputType Enum class representing different types of rain input

used in the BG-Flood Model.

class src.dynamic_boundary_conditions.rainfall.rainfall_enum.HyetoMethod

Bases: enum. StrEnum
Enum class representing different hyetograph methods.
ALT_BLOCK

Alternating Block Method.

Type

str
CHICAGO
Chicago Method.

Type

str
ALT_BLOCK = 'alt_block'
CHICAGO = 'chicago'
class src.dynamic_boundary_conditions.rainfall.rainfall_enum.RainInputType
Bases: enum. StrEnum

Enum class representing different types of rain input used in the BG-Flood Model.

UNIFORM

Spatially uniform rain input.

Type

str

1.1. src 37



Flood Resilience Digital Twin (FReDT), Release 0.1.0

VARYING
Spatially varying rain input.

Type
str

UNIFORM 'uniform’

VARYING 'varying'

src.dynamic_boundary_conditions.rainfall.rainfall_model_input

Generate the requested rainfall model input for BG-Flood, which can be either spatially uniform rain input

(‘rain_forcing.txt’ text file) or spatially varying rain input (‘rain_forcing.nc’ NetCDF file).

Module Contents

Functions

sites_voronoi_intersect_catchment(— geopan-
das.GeoDataFrame)
sites_coverage_in_catchment(—
das.GeoDataFrame)
mean_catchment_rainfall(— pandas.DataFrame)

geopan-

spatial_uniform_rain_input(— None)
create_rain_data_cube(— xarray.Dataset)
spatial_varying rain_input(— None)

generate_rain_model_input(— None)

Get the intersecting areas between the rainfall site cov-
erage areas (Thiessen polygons) and the catchment area,
Get the intersecting areas between the rainfall site cov-
erage areas (Thiessen polygons) and the catchment area,
Calculate the mean catchment rainfall intensities
(weighted average of gauge measurements)

Write the mean catchment rainfall intensities data (i.e.,
'seconds' and 'rain_intensity_mmhr' columns)

Create rainfall intensities data cube (xarray data) for the
catchment area across all durations,

Write the rainfall intensities data cube in NetCDF format
(rain_forcing.nc).

Generate the requested rainfall model input for BG-
Flood, either spatially uniform rain input

Attributes

log

src.dynamic_boundary_conditions.rainfall.rainfall_model_input.log

src.dynamic_boundary_conditions.rainfall.rainfall_model_input.sites_voronoi_intersect_catchment (sites_in_c
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Get the intersecting areas between the rainfall site coverage areas (Thiessen polygons) and the catchment area,
i.e. return the overlapped areas.

Parameters

» sites_in_catchment (gpd. GeoDataFrame)— Rainfall site coverage areas (Thiessen poly-
gons) that intersect or are within the catchment area.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

Returns

A GeoDataFrame containing the intersecting areas between the rainfall site coverage areas and
the catchment area.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.rainfall.rainfall_model_input.sites_coverage_in_catchment (sites_in_catchme

Get the intersecting areas between the rainfall site coverage areas (Thiessen polygons) and the catchment area,
and calculate the size and percentage of the area covered by each rainfall site inside the catchment area.

Parameters

* sites_in_catchment (gpd.GeoDataFrame) — Rainfall sites coverage areas (Thiessen
polygons) that intersect or are within the catchment area.

e catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

Returns
A GeoDataFrame containing the intersecting areas between the rainfall site coverage areas and
the catchment area, with calculated size and percentage of area covered by each rainfall site.

Return type
gpd.GeoDataFrame

geopan-
das.GeoDataFrai
catch-
ment_area:
geopan-
das.GeoDataFrai
_>
geopandas.GeoD:

src.dynamic_boundary_conditions.rainfall.rainfall_model_input.mean_catchment_rainfall (hyetograph_data:

pan-

das.DataFrame,
sites_coverage:
geopan-
das.GeoDataFrame)

%

pandas.DataFrame

Calculate the mean catchment rainfall intensities (weighted average of gauge measurements) across all durations
using the Thiessen polygon method.

Parameters
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» hyetograph_data (pd.DataFrame) — Hyetograph intensities data for sites within the
catchment area.

* sites_coverage (gpd. GeoDataFrame) — A GeoDataFrame containing information about
the coverage area of each rainfall site within the catchment area, including the size and per-
centage of the catchment area covered by each site.

Returns
A DataFrame containing the mean catchment rainfall intensities across all durations.

Return type
pd.DataFrame

src.dynamic_boundary_conditions.rainfall.rainfall_model_input.spatial_uniform_rain_input (hyetograph_data:

pan-
das.DataFrame,
sites_coverage:
geopan-
das.GeoDataFram
bg_flood_dir:
path-
lib.Path)
4)
None

Write the mean catchment rainfall intensities data (i.e., ‘seconds’ and ‘rain_intensity_mmbhr’ columns) into a text

file named ‘rain_forcing.txt’. This file can be used as spatially uniform rain input for the BG-Flood model.

Parameters

* hyetograph_data (pd.DataFrame) — Hyetograph intensities data for sites within the
catchment area.

* sites_coverage (gpd.GeoDataFrame) — A GeoDataFrame containing information about
the coverage area of each rainfall site within the catchment area, including the size and per-
centage of the catchment area covered by each site.

* bg_flood_dir (pathlib.Path) - BG-Flood model directory.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.rainfall.rainfall_model_input.create_rain_data_cube (hyetograph_data:
pan-
das.DataFrame,
sites_coverage:
geopan-
das.GeoDataFrame)
4)
xarray.Dataset

Create rainfall intensities data cube (xarray data) for the catchment area across all durations, i.e. convert rainfall
intensities vector data into rasterized xarray data.

Parameters

* hyetograph_data (pd.DataFrame) — Hyetograph intensities data for sites within the
catchment area.
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» sites_coverage (gpd.GeoDataFrame) — A GeoDataFrame containing information about
the coverage area of each rainfall site within the catchment area, including the size and per-
centage of the catchment area covered by each site.

Returns
Rainfall intensities data cube in the form of xarray dataset.

Return type
xr.Dataset

src.dynamic_boundary_conditions.rainfall.rainfall_model_input.spatial_varying_rain_input (hyetograph_data:

pan-
das.DataFrame,
sites_coverage:
geopan-
das.GeoDataFram
bg_flood_dir:
path-
lib.Path)
_)
None

Write the rainfall intensities data cube in NetCDF format (rain_forcing.nc). This file can be used as spatially

varying rain input for the BG-Flood model.

Parameters

* hyetograph_data (pd.DataFrame) — Hyetograph intensities data for sites within the
catchment area.

* sites_coverage (gpd.GeoDataFrame) — A GeoDataFrame containing information about
the coverage area of each rainfall site within the catchment area, including the size and per-
centage of the catchment area covered by each site.

* bg_flood_dir (pathlib.Path) - BG-Flood model directory.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.rainfall.rainfall_model_input.generate_rain_model_input (hyetograph_data:
pan-
das.DataFrame,
sites_coverage:
geopan-
das.GeoDataFrame
bg_flood_dir:
path-
lib.Path,
in-
put_type:
src.dynamic_bound:
%
None

Generate the requested rainfall model input for BG-Flood, either spatially uniform rain input (‘rain_forcing.txt’
text file) or spatially varying rain input (‘rain_forcing.nc’ NetCDF file).

Parameters
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» hyetograph_data (pd.DataFrame) — Hyetograph intensities data for sites within the
catchment area.

* sites_coverage (gpd. GeoDataFrame) — A GeoDataFrame containing information about
the coverage area of each rainfall site within the catchment area, including the size and per-
centage of the catchment area covered by each site.

* bg_flood_dir (pathlib.Path) - BG-Flood model directory.

e input_type (RainInputType) — The type of rainfall model input to be generated. Valid
options are ‘uniform’ or ‘varying’, representing spatially uniform rain input (text file) or
spatially varying rain input (NetCDF file).

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.rainfall.rainfall_sites

Fetch rainfall sites data from the HIRDS website and store it in the database.

Module Contents

Functions
get_rainfall_sites_data(— str) Get rainfall sites data from the HIRDS website.
get_rainfall sites_in_df(— geopan-  Get rainfall sites data from the HIRDS website and trans-
das.GeoDataFrame) form it into a GeoDataFrame.
rainfall_sites_to_db(— None) Store rainfall sites data from the HIRDS website in the

database.

Attributes

log

src.dynamic_boundary_conditions.rainfall.rainfall_sites.log
src.dynamic_boundary_conditions.rainfall.rainfall_sites.get_rainfall_sites_data() — str
Get rainfall sites data from the HIRDS website.

Returns
The rainfall sites data as a string.

Return type
str
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src.dynamic_boundary_conditions.rainfall.rainfall_sites.get_rainfall_sites_in_df() —
geopandas.GeoDataFrame

Get rainfall sites data from the HIRDS website and transform it into a GeoDataFrame.

Returns
A GeoDataFrame containing the rainfall sites data.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.rainfall.rainfall_sites.rainfall_sites_to_db(engine:
sqlalchemy.engine.Engine)
— None

Store rainfall sites data from the HIRDS website in the database.

Parameters
engine (Engine) — The engine used to connect to the database.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.rainfall.thiessen_polygons

Calculate the area covered by each rainfall site throughout New Zealand and store it in the database. Retrieve the
coverage areas (Thiessen polygons) for all rainfall sites located within the catchment area.

Module Contents

Functions
get_sites_within_aoi(— geopan-  Get all rainfall sites within the area of interest from the
das.GeoDataFrame) database and return the required data as a
thiessen_polygons_calculator(— geopan- Create Thiessen polygons for rainfall sites within the
das.GeoDataFrame) area of interest and calculate the area covered by each
thiessen_polygons_to_db(— None) Store the data representing the Thiessen polygons, site

information, and the area covered by

thiessen_polygons_from_db(— geopan-  Get the coverage areas (Thiessen polygons) of all rainfall
das.GeoDataFrame) sites that intersect or are within the

Attributes
log

src.dynamic_boundary_conditions.rainfall.thiessen_polygons.log
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src.dynamic_boundary_conditions.rainfall.thiessen_polygons.get_sites_within_aoi (engine:
sqlalchemy.engine.Engine,
area_of _interest:
geopan-
das.GeoDataFrame)
%
geopandas.GeoDataFrame

Get all rainfall sites within the area of interest from the database and return the required data as a GeoDataFrame.

Parameters
* engine (Engine) — The engine used to connect to the database.

» area_of_interest (gpd.GeoDataFrame) — A GeoDataFrame representing the area of in-
terest.

Returns
A GeoDataFrame containing the rainfall sites within the area of interest.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.rainfall.thiessen_polygons.thiessen_polygons_calculator (area_of _interest:

geopan-
das.GeoDataFrame
sites_in_aoi:
geopan-
das.GeoDataFrame
—
geopandas.GeoData

Create Thiessen polygons for rainfall sites within the area of interest and calculate the area covered by each

rainfall site.

Parameters

» area_of_interest (gpd. GeoDataFrame) — A GeoDataFrame representing the area of in-
terest.

e sites_in_aoi (gpd.GeoDataFrame) — Rainfall sites within the area of interest.

Returns
A GeoDataFrame containing the Thiessen polygons, site information, and area covered by each
rainfall site.

Return type
gpd.GeoDataFrame

Raises
ValueError —

* If the provided ‘area_of_interest’ GeoDataFrame does not contain any data.

* If the provided ‘sites_in_aoi’ GeoDataFrame does not contain any data.
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src.dynamic_boundary_conditions.rainfall.thiessen_polygons.thiessen_polygons_to_db (engine:
sqlalchemy.engine.Engine,
area_of _interest:
geopan-
das.GeoDataFrame,
sites_in_aoi:
geopan-
das.GeoDataFrame)
— None

Store the data representing the Thiessen polygons, site information, and the area covered by each rainfall site in
the database.

Parameters
* engine (Engine) — The engine used to connect to the database.

» area_of_interest (gpd. GeoDataFrame) — A GeoDataFrame representing the area of in-
terest.

e sites_in_aoi (gpd.GeoDataFrame) — Rainfall sites within the area of interest.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.rainfall.thiessen_polygons.thiessen_polygons_£from_db (engine:
sqlalchemy.engine.Engi
catch-
ment_area:
geopan-
das.GeoDataFrame)
_>
geopandas.GeoDataFrar

Get the coverage areas (Thiessen polygons) of all rainfall sites that intersect or are within the specified catchment
area.

Parameters
* engine (Engine) — The engine used to connect to the database.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

Returns
A GeoDataFrame containing the coverage areas (Thiessen polygons) of rainfall sites within the
catchment area.

Return type
gpd.GeoDataFrame
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src.dynamic_boundary_conditions.river

Submodules

src.dynamic_boundary_conditions.river.align_recl_osm

This script handles the task of obtaining data for REC1 river inflow segments whose boundary points align with the
boundary points of OpenStreetMap (OSM) waterways within a specified distance threshold.

Module Contents

Functions
get_recl_network_data_on_bbox(— geopan- Obtain RECI river network data that intersects with the
das.GeoDataFrame) catchment area boundary, along with the corresponding
get_single_intersect_inflows(— geopan- Identifies RECI river segments that intersect the catch-
das.GeoDataFrame) ment boundary once, then retrieves the segments
get_exploded_multi_intersect(— geopan- Identifies REC1 river segments that intersect the catch-

das.GeoDataFrame)
determine_multi_intersect_inflow_index(—
int)

categorize_exploded_multi_intersect(—
Dict[int, ...)

get_multi_intersect_inflows(— geopan-
das.GeoDataFrame)

get_recl_inflows_on_bbox(— geopan-
das.GeoDataFrame)

get_osm_waterways_on_bbox(— geopan-
das.GeoDataFrame)
align_recl_with_osm(— geopan-

das.GeoDataFrame)

get_recl_inflows_aligned_to_osm(—  geopan-
das.GeoDataFrame)

ment boundary multiple times,

Determines the index that represents the position of the
first inflow boundary point along a RECI river segment.
Categorizes boundary points of REC1 river segments
that intersect the catchment boundary multiple times into
Identifies RECI river segments that intersect the catch-
ment boundary multiple times, then retrieves the seg-
ments

Obtain RECI river segments that are inflows into the
specified catchment area, along with their correspond-
ing

Retrieve OpenStreetMap (OSM) waterway data that in-
tersects with the catchment area boundary,

Aligns the boundary points of RECI river inflow seg-
ments with the boundary points of OpenStreetMap
(OSM) waterways

Obtain data for RECI1 river inflow segments whose
boundary points align with the boundary points of

src.dynamic_boundary_conditions.river.align_recl_osm.get_recl_network_data_on_bbox(engine:

sqlalchemy.engine.Engine,
catch-

ment_area:

geopan-
das.GeoDataFrame,
recl_network_data:
geopan-
das.GeoDataFrame)

%
geopandas.GeoDataFrame

Obtain RECI river network data that intersects with the catchment area boundary, along with the corresponding

intersection points on the boundary.
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Parameters
* engine (Engine) — The engine used to connect to the database.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

» recl_network_data (gpd.GeoDataFrame)— A GeoDataFrame containing the RECI1 river
network data.

Returns
A GeoDataFrame containing RECI river network data that intersects with the catchment area
boundary, along with the corresponding intersection points on the boundary.

Return type
gpd.GeoDataFrame
src.dynamic_boundary_conditions.river.align_recl_osm.get_single_intersect_inflows(rec/_on_bbox:
geopan-
das.GeoDataFrame)
_>

geopandas.GeoDataFrame

Identifies RECI1 river segments that intersect the catchment boundary once, then retrieves the segments that are
inflows into the catchment area, along with their corresponding inflow boundary points.

Parameters
recl_on_bbox (gpd. GeoDataFrame) — A GeoDataFrame containing REC1 river network data
that intersects with the catchment area boundary, along with the corresponding intersection points
on the boundary.

Returns
A GeoDataFrame containing the REC1 river segments that intersect the catchment boundary
once and are inflows into the catchment area, along with their corresponding inflow boundary

points.
Return type
gpd.GeoDataFrame
src.dynamic_boundary_conditions.river.align_recl_osm.get_exploded_multi_intersect (recl_on_bbox:
geopan-
das.GeoDataFrame)
_>

geopandas.GeoDataFrame

Identifies REC1 river segments that intersect the catchment boundary multiple times, transforms MultiPoint
geometries into individual Point geometries (boundary points), calculates the distance along the river segment
for each boundary point, and adds a new column containing boundary points sorted by their distance along the
river.

Parameters
recl_on_bbox (gpd. GeoDataFrame) — A GeoDataFrame containing RECI1 river network data
that intersects with the catchment area boundary, along with the corresponding intersection points
on the boundary.

Returns
A GeoDataFrame containing the REC1 river segments that intersect the catchment boundary
multiple times, along with the corresponding intersection points on the boundary, sorted by dis-
tance along the river.

Return type
gpd.GeoDataFrame
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src.dynamic_boundary_conditions.river.align_recl_osm.determine_multi_intersect_inflow_index (multi_interseci

pan-
das.Series)

H

int

Determines the index that represents the position of the first inflow boundary point along a REC1 river segment.
Parameters
multi_intersect_row (pd.Series) — A RECI river segment that intersects the catchment

boundary multiple times, along with the corresponding intersection points on the boundary,
sorted by distance along the river.

Returns

An integer that represents the position of the first inflow boundary point along a RECI river
segment.

Return type
int

Raises

ValueError - If the index that represents the position of the first inflow boundary point along a
RECI river segment cannot be determined.

src.dynamic_boundary_conditions.river.align_recl_osm.categorize_exploded_multi_intersect (multi_intersect:

geopan-
das.GeoDataFram
_>
Dict[int,
Dict][str,
List[shapely.geom

Categorizes boundary points of RECI1 river segments that intersect the catchment boundary multiple times into

‘inflow’ and ‘outflow’ based on their sequential positions along the river segment etc.

Parameters
multi_intersect (gpd.GeoDataFrame) — A GeoDataFrame containing the REC1 river seg-
ments that intersect the catchment boundary multiple times, along with the corresponding inter-
section points on the boundary, sorted by distance along the river.

Returns
A dictionary where the keys represent the ‘objectid’ values of RECI river segments, and the
values are dictionaries. Each of these dictionaries contains two lists: ‘inflow’ and ‘outflow,’

which respectively represent the boundary points where water flows into and out of the catchment
area.

Return type
Dict[int, Dict[str, List[Point]]]

src.dynamic_boundary_conditions.river.align_recl_osm.get_multi_intersect_inflows(rec/_on_bbox:
geopan-
das.GeoDataFrame)
_>
geopandas.GeoDataFrame
Identifies REC1 river segments that intersect the catchment boundary multiple times, then retrieves the segments
that are inflows into the catchment area, along with their corresponding inflow boundary points.

Parameters
recl_on_bbox (gpd. GeoDataFrame) — A GeoDataFrame containing RECI1 river network data
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that intersects with the catchment area boundary, along with the corresponding intersection points
on the boundary.

Returns
A GeoDataFrame containing the REC1 river segments that intersect the catchment boundary
multiple times and are inflows into the catchment area, along with their corresponding inflow
boundary points.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.river.align_recl_osm.get_recl_inflows_on_bbox (engine:
sqlalchemy.engine.Engine,
catch-
ment_area:
geopan-
das.GeoDataFrame,
recl_network_data:
geopan-
das.GeoDataFrame)
%
geopandas.GeoDataFrame

Obtain RECI river segments that are inflows into the specified catchment area, along with their corresponding
inflow boundary points.

Parameters
» engine (Engine) — The engine used to connect to the database.

e catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

» recl_network_data (gpd.GeoDataFrame)— A GeoDataFrame containing the RECI river
network data.

Returns
A GeoDataFrame containing REC1 river segments that are inflows into the catchment area, along
with their corresponding inflow boundary points.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.river.align_recl_osm.get_osm_waterways_on_bbox(engine:
sqlalchemy.engine.Engine,
catch-
ment_area:
geopan-
das.GeoDataFrame)
%
geopandas.GeoDataFrame

Retrieve OpenStreetMap (OSM) waterway data that intersects with the catchment area boundary, along with the
corresponding intersection points on the boundary.

Parameters
» engine (Engine) — The engine used to connect to the database.

e catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.
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Returns
A GeoDataFrame containing OpenStreetMap (OSM) waterway data that intersects with the
catchment boundary, along with the corresponding intersection points on the boundary.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.river.align_recl_osm.align_recl_with_osm(rec!_inflows_on_bbox:
geopan-
das.GeoDataFrame,
osm_waterways_on_bbox:
geopan-
das.GeoDataFrame,
distance_m: int =
300) —
geopandas.GeoDataFrame

Aligns the boundary points of REC1 river inflow segments with the boundary points of OpenStreetMap (OSM)
waterways within a specified distance threshold.

Parameters

» recl_inflows_on_bbox (gpd.GeoDataFrame) — A GeoDataFrame containing REC1
river network segments where water flows into the catchment area, along with their cor-
responding inflow boundary points.

* osm_waterways_on_bbox (gpd.GeoDataFrame) — A GeoDataFrame containing Open-
StreetMap (OSM) waterway data that intersects with the catchment boundary, along with
the corresponding intersection points on the boundary.

» distance_m (int = 300) — Distance threshold in meters for spatial proximity matching.
The default value is 300 meters.

Returns
A GeoDataFrame containing the boundary points of REC1 river inflow segments aligned with
the boundary points of OpenStreetMap (OSM) waterways within a specified distance threshold.

Return type
gpd.GeoDataFrame
src.dynamic_boundary_conditions.river.align_recl_osm.get_recl_inflows_aligned_to_osm(engine:
sqlalchemy.engine.Engi
catch-
ment_area:
geopan-

das.GeoDataFrame,
recl_network_data:
geopan-
das.GeoDataFrame,
dis-

tance_m:

int=

300)

_>
geopandas.GeoDataFrar

Obtain data for RECI river inflow segments whose boundary points align with the boundary points of Open-
StreetMap (OSM) waterways within a specified distance threshold.

Parameters
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» engine (Engine) — The engine used to connect to the database.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

» recl_network_data (gpd.GeoDataFrame)— A GeoDataFrame containing the RECI river
network data.

» distance_m (int = 300) — Distance threshold in meters for spatial proximity matching.
The default value is 300 meters.

Returns
A GeoDataFrame containing data for REC1 river inflow segments whose boundary points align
with the boundary points of OpenStreetMap (OSM) waterways within a specified distance thresh-
old.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.river.hydrograph

This script handles the task of obtaining REC1 river inflow scenario data, whether it’'s Mean Annual Flood (MAF) or
Average Recurrence Interval (ARI)-based, and generates corresponding hydrograph data for the requested scenarios.

Module Contents

Functions

clean_recl_inflow_data(— geopan- Selects and renames specific columns that represent

das.GeoDataFrame) RECI river inflow data from the input GeoDataFrame.

extract_valid_ari_values(— List[int]) Extracts valid ARI (Annual Recurrence Interval) values
from the column names of the RECI1 river inflow data.

get_recl_inflow_scenario_data(— geopan- Obtain the requested RECI1 river inflow scenario data,

das.GeoDataFrame) which can be either Mean Annual Flood (MAF)-based
or

get_hydrograph_data(— geopan-  Generate hydrograph data for the requested REC1 river

das.GeoDataFrame) inflow scenario.

src.dynamic_boundary_conditions.river.hydrograph.clean_recl_inflow_data(rec!_inflows_w_input_points:
geopan-
das.GeoDataFrame)
%
geopandas.GeoDataFrame

Selects and renames specific columns that represent REC1 river inflow data from the input GeoDataFrame.

Parameters
recl_inflows_w_input_points (gpd.GeoDataFrame) — A GeoDataFrame containing data
for REC1 river inflow segments whose boundary points align with the boundary points of Open-
StreetMap (OSM) waterways within a specified distance threshold, along with their correspond-
ing river input points used in the BG-Flood model.

Returns
A GeoDataFrame with selected and renamed columns representing REC1 river inflow data.
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Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.river.hydrograph.extract_valid_ari_values(reci_inflow_data:
geopan-
das.GeoDataFrame)
— List[int]
Extracts valid ARI (Annual Recurrence Interval) values from the column names of the REC1 river inflow data.

Parameters
recl_inflow_data (gpd.GeoDataFrame) — A GeoDataFrame containing RECI river inflow
data with column names that include ARI values.

Returns
A list of valid ARI values extracted from the column names of the REC1 river inflow data.

Return type
List[int]

src.dynamic_boundary_conditions.river.hydrograph.get_recl_inflow_scenario_data(rec!_inflows_w_input_points:
geopan-
das.GeoDataFrame,
maf: bool =
True, ari: int
| None =
None, bound:
src.dynamic_boundary_conditic
= Bound-
Type. MIDDLE)
%
geopandas.GeoDataFrame

Obtain the requested REC1 river inflow scenario data, which can be either Mean Annual Flood (MAF)-based or
Average Recurrence Interval (ARI)-based scenario data.

Parameters

» recl_inflows_w_input_points (gpd.GeoDataFrame) — A GeoDataFrame containing
data for REC1 river inflow segments whose boundary points align with the boundary points
of OpenStreetMap (OSM) waterways within a specified distance threshold, along with their
corresponding river input points used in the BG-Flood model.

* maf (bool = True) — Set to True to obtain MAF-based scenario data or False to obtain
ARI-based scenario data.

e ari (Optional[int] = None)- The Average Recurrence Interval (ARI) value. Valid op-
tions are 5, 10, 20, 50, 100, or 1000. Mandatory when ‘maf” is set to False, and should be
set to None when ‘maf’ is set to True.

* bound (BoundType = BoundType.MIDDLE) — Set the type of bound (estimate) for the
RECI river inflow scenario data. Valid options include: ‘BoundType.LOWER’, ‘Bound-
Type.MIDDLE’, or ‘BoundType.UPPER’.

Returns
A GeoDataFrame containing the requested RECI1 river inflow scenario data.

Return type
gpd.GeoDataFrame

Raises
ValueError —
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o If ‘ari’ is provided when ‘maf” is set to True (i.e. ‘maf” is True and ‘ari’ is not set to None).

e If ‘ari’ is not provided when ‘maf’ is set to False (i.e. ‘maf’ is False and ‘ari’ is set to None).

 If an invalid ‘ari’ value is provided.

src.dynamic_boundary_conditions.river.hydrograph.get_hydrograph_data(reci_inflows_w_input_points:

geopan-
das.GeoDataFrame,
flow_length_mins: int,
time_to_peak_mins: int |
float, maf: bool = True,
ari: int | None = None,
bound:
src.dynamic_boundary_conditions.river.river
= BoundType. MIDDLE)
N
geopandas.GeoDataFrame

Generate hydrograph data for the requested REC1 river inflow scenario.

Parameters

Returns

recl_inflows_w_input_points (gpd. GeoDataFrame) — A GeoDataFrame containing
data for REC1 river inflow segments whose boundary points align with the boundary points
of OpenStreetMap (OSM) waterways within a specified distance threshold, along with their
corresponding river input points used in the BG-Flood model.

flow_length_mins (int) — Duration of the river flow in minutes.

time_to_peak_mins (Union[int, float]) — The time in minutes when flow is at its
greatest (reaches maximum).

maf (bool = True) — Set to True to obtain MAF-based scenario data or False to obtain
ARI-based scenario data.

ari (Optional[int] = None) - The Average Recurrence Interval (ARI) value. Valid op-
tions are 5, 10, 20, 50, 100, or 1000. Mandatory when ‘maf” is set to False, and should be
set to None when ‘maf’ is set to True.

bound (BoundType = BoundType.MIDDLE) — Set the type of bound (estimate) for the
RECI river inflow scenario data. Valid options include: ‘BoundType.LOWER’, ‘Bound-
Type.MIDDLE’, or ‘BoundType.UPPER"’.

A GeoDataFrame containing hydrograph data for the requested RECI1 river inflow scenario.

Return type
gpd.GeoDataFrame

Raises

ValueError - If the specified ‘time_to_peak_mins’ is less than half of the river flow duration.
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src.dynamic_boundary_conditions.river.main_river

Main river script used to read and store REC1 data in the database, fetch OSM waterways data, create a river network
and its associated data, and generate the requested river model input for BG-Flood etc.

Module Contents

Functions

retrieve_hydro_dem_info(— Tuple[xarray.Dataset,
)

get_hydro_dem_boundary_lines(—
das.GeoDataFrame)
remove_existing_river_inputs(— None)

geopan-

main(— None)

Retrieves the Hydrologically Conditioned DEM (Hydro
DEM) data, along with its spatial extent and resolution,
Get the boundary lines of the Hydrologically Condi-
tioned DEM.

Remove existing river input files from the specified di-
rectory.

Read and store REC1 data in the database, fetch OSM

waterways data, create a river network and its associated
data,

Attributes

sample_polygon

src.dynamic_boundary_conditions.river.main_river.retrieve_hydro_dem_info (engine:
sqlalchemy.engine.Engine,
catchment_area:
geopan-
das.GeoDataFrame)
%
Tuple[xarray.Dataset,
shapely.geometry.LineString,
int | float]

Retrieves the Hydrologically Conditioned DEM (Hydro DEM) data, along with its spatial extent and resolution,
for the specified catchment area.

Parameters
* engine (Engine) — The engine used to connect to the database.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

Returns
A tuple containing the Hydro DEM data as a xarray Dataset, the spatial extent of the Hydro DEM
as a LineString, and the resolution of the Hydro DEM as either an integer or a float.

Return type
Tuple[xr.Dataset, LineString, Union[int, float]]
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src.dynamic_boundary_conditions.river.main_river.get_hydro_dem_boundary_lines(engine:
sqlalchemy.engine.Engine,
catch-
ment_area.
geopan-
das.GeoDataFrame)
_>
geopandas.GeoDataFrame

Get the boundary lines of the Hydrologically Conditioned DEM.

Parameters
* engine (Engine) — The engine used to connect to the database.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

Returns
A GeoDataFrame containing the boundary lines of the Hydrologically Conditioned DEM.

Return type
gpd.GeoDataFrame
src.dynamic_boundary_conditions.river.main_river.remove_existing_river_inputs(bg_flood_dir:
pathlib. Path)
— None
Remove existing river input files from the specified directory.
Parameters
bg_flood_dir (pathlib.Path) — The BG-Flood model directory containing the river input
files.
Returns

This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.river.main_river.main(selected_polygon_gdf:

geopandas.GeoDataFrame,
flow_length_mins: int, time_to_peak_mins:
int | float, maf: bool = True, ari: int | None =
None, bound:
src.dynamic_boundary_conditions.river.river_enum.BoundType
= BoundType.MIDDLE, log_level:
src.digitaltwin.utils.LogLevel =
LogLevel DEBUG) — None

Read and store REC1 data in the database, fetch OSM waterways data, create a river network and its associated

data, and generate the requested river model input for BG-Flood.

Parameters

» selected_polygon_gdf (gpd.GeoDataFrame) — A GeoDataFrame representing the se-
lected polygon, i.e., the catchment area.

e flow_length_mins (int) — Duration of the river flow in minutes.

e time_to_peak_mins (Union[int, float]) — The time in minutes when flow is at its
greatest (reaches maximum).
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Returns

maf (bool = True) — Set to True to obtain MAF-based scenario data or False to obtain
ARI-based scenario data.

ari (Optional[int] = None)- The Average Recurrence Interval (ARI) value. Valid op-
tions are 5, 10, 20, 50, 100, or 1000. Mandatory when ‘maf” is set to False, and should be
set to None when ‘maf’ is set to True.

bound (BoundType = BoundType.MIDDLE) — Set the type of bound (estimate) for the
RECI river inflow scenario data. Valid options include: ‘BoundType.LOWER’, ‘Bound-
Type.MIDDLE’, or ‘BoundType.UPPER’.

log_level (LogLevel = LogLevel.DEBUG) — The log level to set for the root logger.
Defaults to LogLevel. DEBUG. The available logging levels and their corresponding numeric
values are: - LogLevel. CRITICAL (50) - LogLevel. ERROR (40) - LogLevel. WARNING
(30) - LogLevel.INFO (20) - LogLevel. DEBUG (10) - LogLeve. NOTSET (0)

This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.river.main_river.sample_polygon

src.dynamic_boundary_conditions.river.osm_waterways

This script handles the fetching of OpenStreetMap (OSM) waterways data for the defined catchment area.

Module Contents

Functions

configure_osm_cache(— None)

fetch_osm_waterways(— geopan-
das.GeoDataFrame)
get_osm_waterways_data(— geopan-

das.GeoDataFrame)

Change the directory for storing the OSM cache files.
Fetches OpenStreetMap (OSM) waterways data for the
specified catchment area.

Fetches OpenStreetMap (OSM) waterways data for the
specified catchment area.

src.dynamic_boundary_conditions.river.osm_waterways.configure_osm_cache() — None

Change the directory for storing the OSM cache files.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.river.osm_waterways.fetch_osm_waterways (carchment_area:

geopan-
das.GeoDataFrame)

_>
geopandas.GeoDataFrame

Fetches OpenStreetMap (OSM) waterways data for the specified catchment area.
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Parameters
catchment_area (gpd. GeoDataFrame) — A GeoDataFrame representing the catchment area.

Returns
A GeoDataFrame containing the retrieved OSM waterways data for the specified catchment area.

Return type
gpd.GeoDataFrame
src.dynamic_boundary_conditions.river.osm_waterways.get_osm_waterways_data(catchment_area:
geopan-
das.GeoDataFrame)
_>

geopandas.GeoDataFrame

Fetches OpenStreetMap (OSM) waterways data for the specified catchment area. Only LineString geometries
representing waterways of type “river” or “stream” are included.

Parameters
catchment_area (gpd. GeoDataFrame) — A GeoDataFrame representing the catchment area.

Returns
A GeoDataFrame containing only LineString geometries representing waterways of type “river”
or “stream”.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.river.river_data_to_from_db

This script handles the following tasks: reading REC1 data from the NIWA REC1 dataset, storing REC1 data within
the database, and retrieving REC1 data enriched with sea-draining catchment information from the database.

Module Contents

Functions

get_niwa_recl_data(— geopandas.GeoDataFrame)

store_recl_data_to_db(— None)

get_sdc_data_from_db(— geopan-
das.GeoDataFrame)
get_recl_data_with_sdc_from_db(— geopan-

das.GeoDataFrame)

Reads REC1 data from the NIWA REC1 dataset and re-
turns a GeoDataFrame.

Store REC1 data to the database.

Retrieve sea-draining catchment data from the database
that intersects with the given catchment area.

Retrieve REC1 data from the database for the specified
catchment area with an additional column that identifies
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Attributes

log

src.dynamic_boundary_conditions.river.river_data_to_from_db.log

src.dynamic_boundary_conditions.river.river_data_to_from_db.get_niwa_recl_data() —
geopandas.GeoDataFrame

Reads REC1 data from the NIWA RECI1 dataset and returns a GeoDataFrame.

Returns
A GeoDataFrame containing the REC1 data from the NZ REC1 dataset.

Return type
gpd.GeoDataFrame

Raises
FileNotFoundError - If the REC1 data directory does not exist or if there are no Shapefiles in
the specified directory.

src.dynamic_boundary_conditions.river.river_data_to_from_db.store_recl_data_to_db(engine:
sqlalchemy.engine.Engine)
— None

Store REC1 data to the database.

Parameters
engine (Engine) — The engine used to connect to the database.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.river.river_data_to_from_db.get_sdc_data_from_db(engine:
sqlalchemy.engine.Engine,
catch-
ment_area:
geopan-
das.GeoDataFrame)
%
geopandas.GeoDataFrame

Retrieve sea-draining catchment data from the database that intersects with the given catchment area.
Parameters
* engine (Engine) — The engine used to connect to the database.

» catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

Returns
A GeoDataFrame containing sea-draining catchment data that intersects with the given catchment
area.

Return type
gpd.GeoDataFrame
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src.dynamic_boundary_conditions.river.river_data_to_from_db.get_recl_data_with_sdc_from_db(engine:

Retrieve REC1 data from the database for the specified catchment area with an additional column that identifies
the associated sea-draining catchment for each REC1 geometry. Simultaneously, identify the REC1 geometries
that do not fully reside within sea-draining catchments and proceed to add these excluded REC1 geometries to
the appropriate database table.

Parameters
* engine (Engine) — The engine used to connect to the database.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

e river_network_id (int) — An identifier for the river network associated with the current
run.

Returns
A GeoDataFrame containing the retrieved REC1 data for the specified catchment area with an
additional column that identifies the associated sea-draining catchment for each REC1 geometry.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.river.river_enum

Enum(s) used in the river module.

Module Contents

Classes

BoundType Enum class representing different types of estimates
used in river flow scenarios.

class src.dynamic_boundary_conditions.river.river_enum.BoundType
Bases: enum. StrEnum

Enum class representing different types of estimates used in river flow scenarios.

LOWER
Lower bound of a confidence interval.
Type
str
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MIDDLE

Point estimate or sample mean.

Type

str

UPPER

Upper bound of a confidence interval.

Type
str

LOWER = 'lower'
MIDDLE = 'middle’
UPPER = 'upper'

src.dynamic_boundary_conditions.river.river_inflows

This script handles the task of obtaining RECI1 river inflow data along with the corresponding river input points used
for the BG-Flood model.

Module Contents

Functions
get_elevations_near_recl_entry_point(...) Extracts elevation values and their corresponding coor-
dinates from the Hydrologically Conditioned DEM in
the
get_min_elevation_river_input_point(...) Locate the river input point with the lowest elevation,
used for BG-Flood model river input, from the
get_recl_inflows_with_input_points(...) Obtain data for RECI1 river inflow segments whose

boundary points align with the boundary points of

src.dynamic_boundary_conditions.river.river_inflows.get_elevations_near_recl_entry_point (recl_inflows_row:
pan-
das.Series,
hy-
dro_dem:
xar-
ray.Dataset)
4)
geopandas.GeoDat

Extracts elevation values and their corresponding coordinates from the Hydrologically Conditioned DEM in the
vicinity of the entry point of the REC1 river inflow segment.

Parameters

» recl_inflows_row (pd. Series)— Represents data pertaining to an individual REC1 river
inflow segment, including its entry point into the catchment area and the boundary line it
aligns with.
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* hydro_dem (xr.Dataset) — Hydrologically Conditioned DEM for the catchment area.

Returns
A GeoDataFrame containing elevation values and their corresponding coordinates extracted from
the Hydrologically Conditioned DEM in the vicinity of the entry point of the REC1 river inflow

segment.
Return type
gpd.GeoDataFrame
src.dynamic_boundary_conditions.river.river_inflows.get_min_elevation_river_input_point (recl_inflows_row:

pan-
das.Series,
hy-
dro_dem:
xar-
ray.Dataset)
_>

geopandas.GeoData
Locate the river input point with the lowest elevation, used for BG-Flood model river input, from the Hydrolog-
ically Conditioned DEM for the specific REC1 river inflow segment.

Parameters

» recl_inflows_row (pd. Series)— Represents data pertaining to an individual REC1 river
inflow segment, including its entry point into the catchment area and the boundary line it
aligns with.

* hydro_dem (xr.Dataset) — Hydrologically Conditioned DEM for the catchment area.

Returns
A GeoDataFrame containing the river input point with the lowest elevation, used for BG-Flood
model river input, from the Hydrologically Conditioned DEM for the specific RECI1 river inflow

segment.
Return type
gpd.GeoDataFrame
src.dynamic_boundary_conditions.river.river_inflows.get_recl_inflows_with_input_points(engine:
sqlalchemy.engine.Er
catch-
ment_area:
geopan-

das.GeoDataFrame,
recl_network_data:
geopan-
das.GeoDataFrame,
dis-

tance_m:

int

300)

N
geopandas.GeoDataF

Obtain data for RECI river inflow segments whose boundary points align with the boundary points of Open-
StreetMap (OSM) waterways within a specified distance threshold, along with their corresponding river input
points used for the BG-Flood model.
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Parameters
* engine (Engine) — The engine used to connect to the database.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

» recl_network_data (gpd.GeoDataFrame)— A GeoDataFrame containing the RECI1 river
network data.

» distance_m (int = 300) — Distance threshold in meters for spatial proximity matching.
The default value is 300 meters.

Returns
A GeoDataFrame containing data for REC1 river inflow segments whose boundary points align
with the boundary points of OpenStreetMap (OSM) waterways within a specified distance thresh-
old, along with their corresponding river input points used for the BG-Flood model.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.river.river_model_input

This script handles the task of generating the requested river model inputs for BG-Flood.

Module Contents

Functions

generate_river_model_input(— None) Generate the requested river model inputs for BG-Flood.

Attributes

log

src.dynamic_boundary_conditions.river.river_model_input.log

src.dynamic_boundary_conditions.river.river_model_input.generate_river_model_input (bg_flood_dir:
path-
lib. Path,
hydro-
graph_data:
geopan-
das.GeoDataFrame)
— None

Generate the requested river model inputs for BG-Flood.
Parameters

* bg_flood_dir (pathlib.Path)— The BG-Flood model directory.
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* hydrograph_data (gpd. GeoDataFrame) — A GeoDataFrame containing hydrograph data
for the requested RECI1 river inflow scenario.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.river.river_network_for_aoi

This script processes REC1 data to construct a river network for the defined catchment area.

Module Contents

Functions

get_unique_nodes_dict(—
Dict[shapely.geometry.Point, int])
add_nodes_to_recl(— geopandas.GeoDataFrame)

add_nodes_intersection_type(—
das.GeoDataFrame)

geopan-

prepare_network_data_for_construction(...)
add_nodes_to_network(— None)
add_initial_edges_to_network(— None)
identify_absent_edges_to_add(—

das.GeoDataFrame)
add_absent_edges_to_network(— None)

geopan-

add_edge_directions_to_network_data(...)

remove_unconnected_edges_from_network(...)

build_recl_river_network(— Tu-
ple[networkx.DiGraph, ...)
get_recl_river_network(— Tu-

ple[networkx.Graph, ...)

Generates a dictionary that contains the unique node co-
ordinates in the REC1 data for the catchment area.

Add columns for the first and last coordinates/nodes of
each LineString in the REC1 data within the catchment
area.

Calculate and add an 'intersection_type' column to the
GeoDataFrame that contains REC1 data with node in-
formation.

Prepares the necessary data for constructing the river
network for the catchment area using the REC1 data.
Add nodes to the RECI river network along with their
attributes.

Add initial edges to the REC1 river network along with
their attributes.

Identify edges that are absent from the REC1 river net-
work and require addition.

Add absent edges that are required for the current river
network construction to the RECI river network along
with

Add edge directions to the river network data based on
the provided REC1 river network.

Remove RECI river network edges that are not con-
nected to their respective sea-draining catchment's end
nodes.

Builds a river network for the catchment area using the
REC1 data.

Retrieve or create REC1 river network for the specified
catchment area.
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Attributes

log

src.dynamic_boundary_conditions.river.river_network_for_aoi.log

src.dynamic_boundary_conditions.river.river_network_for_aoi.get_unique_nodes_dict (rec/_data_w_node_coords:
geopan-
das.GeoDataFrame)
%
Dict[shapely.geometry.Poin
int]
Generates a dictionary that contains the unique node coordinates in the REC1 data for the catchment area.

Parameters

recl_data_w_node_coords (gpd. GeoDataFrame) — A GeoDataFrame containing the REC1

data for the catchment area with additional columns for the first and last coordinates of each
LineString.

Returns

A dictionary that contains the unique node coordinates (Point objects) in the REC1 data for the
catchment area.

Return type
Dict[Point, int]

src.dynamic_boundary_conditions.river.river_network_for_aoi.add_nodes_to_recl(recl_data_with_sdc:
geopan-
das.GeoDataFrame)
%
geopandas.GeoDataFrame

Add columns for the first and last coordinates/nodes of each LineString in the REC1 data within the catchment
area.

Parameters

recl_data_with_sdc (gpd. GeoDataFrame)— A GeoDataFrame containing the REC1 data for
the catchment area with an additional column that identifies the associated sea-draining catch-
ment for each REC1 geometry.

Returns

A GeoDataFrame containing the REC1 data for the catchment area with additional columns for
the first and last coordinates/nodes of each LineString.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.river.river_network_for_aoi.add_nodes_intersection_type(catchment_area:

geopan-
das.GeoDataFrame
recl_data_with_noc
geopan-
das.GeoDataFrame
*>
geopandas.GeoData
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Calculate and add an ‘intersection_type’ column to the GeoDataFrame that contains REC1 data with node infor-

geopar
das.Ge
recl _d
geopar
das.Ge
_>

geopan

mation.
Parameters
» catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.
» recl_data_with_nodes (gpd. GeoDataFrame) — A GeoDataFrame containing the REC1
data for the catchment area with additional columns for the first and last coordinates/nodes
of each LineString.
Returns
The input GeoDataFrame with the ‘intersection_type’ column added.
Return type
gpd.GeoDataFrame
src.dynamic_boundary_conditions.river.river_network_for_aoi.prepare_network_data_for_construction(carchm
Prepares the necessary data for constructing the river network for the catchment area using the REC1 data.
Parameters
e catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.
» recl_data_with_sdc (gpd.GeoDataFrame) — A GeoDataFrame containing the REC1
data for the catchment area with an additional column that identifies the associated sea-
draining catchment for each REC1 geometry.
Returns
A GeoDataFrame containing the necessary data for constructing the river network for the catch-
ment area.
Return type
gpd.GeoDataFrame
src.dynamic_boundary_conditions.river.river_network_for_aoi.add_nodes_to_network(recl_network:
net-
workx.Graph,
pre-
pared_network_data:
geopan-
das.GeoDataFrame)
— None

Add nodes to the REC1 river network along with their attributes.
Parameters

» recl_network (nx.Graph) — The RECI river network, a directed graph, to which nodes
will be added.
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» prepared_network_data (gpd.GeoDataFrame) — A GeoDataFrame containing the nec-
essary data for constructing the river network for the catchment area.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.river.river_network_for_aoi.add_initial_edges_to_network (recl_network:
net-
workx.Graph,
pre-
pared_network_da
geopan-
das.GeoDataFram
4)
None

Add initial edges to the REC1 river network along with their attributes.
Parameters

» recl_network (nx.Graph) — The RECI river network, a directed graph, to which initial
edges will be added.

» prepared_network_data (gpd. GeoDataFrame) — A GeoDataFrame containing the nec-
essary data for constructing the river network for the catchment area.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.river.river_network_for_aoi.identify_absent_edges_to_add(recl_network:
net-
workx.Graph,
pre-
pared_network_da
geopan-
das.GeoDataFram
%
geopandas.GeoDat

Identify edges that are absent from the RECI1 river network and require addition.
Parameters
» recl_network (nx.Graph) — The RECI river network, a directed graph.

» prepared_network_data (gpd. GeoDataFrame) — A GeoDataFrame containing the nec-
essary data for constructing the river network for the catchment area.

Returns
A GeoDataFrame containing edges that are absent from the REC1 river network and require
addition.

Return type
gpd.GeoDataFrame
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src.dynamic_boundary_conditions.river.river_network_for_aoi.add_absent_edges_to_network(engine:
sqlalchemy.engine.I
catch-
ment_area.
geopan-
das.GeoDataFrame
recl_network:
net-
workx.Graph,
pre-
pared_network_datc
geopan-
das.GeoDataFrame
%
None

Add absent edges that are required for the current river network construction to the REC1 river network along
with their attributes.

Parameters
* engine (Engine) — The engine used to connect to the database.

* catchment_area (gpd.GeoDataFrame,) — A GeoDataFrame representing the catchment
area.

» recl_network (nx.Graph) — The RECI river network, a directed graph, to which absent
edges will be added.

» prepared_network_data (gpd. GeoDataFrame) — A GeoDataFrame containing the nec-
essary data for constructing the river network for the catchment area.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.river.river_network_for_aoi.add_edge_directions_to_network_data(engine:
sqlalchen
recl_nety
int,
recl_nety
net-
workx.Gr.
pre-
pared_ne
geopan-
das.GeolL
s
geopanda

Add edge directions to the river network data based on the provided REC1 river network. Subsequently, eliminate
RECI geometries from the network data where the edge direction is absent (None), and append these excluded
REC1 geometries to the relevant database table.

Parameters

* engine (Engine) — The engine used to connect to the database.
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e recl_network_id (int) — An identifier for the river network associated with the current
run.

» recl_network (nx.Graph) — The RECI river network, a directed graph, used to determine
the edge directions.

» prepared_network_data (gpd. GeoDataFrame) — A GeoDataFrame containing the nec-
essary data for constructing the river network for the catchment area.

Returns
A GeoDataFrame containing the updated river network data with added edge directions.

Return type
gpd.GeoDataFrame
src.dynamic_boundary_conditions.river.river_network_for_aoi.remove_unconnected_edges_from_network(engine
sqlalch
recl_n
nt,
recl_n
net-
workx.
recl n
geopar
das.Ge
_>
geopar
Remove RECI1 river network edges that are not connected to their respective sea-draining catchment’s end nodes.
Parameters
* engine (Engine) — The engine used to connect to the database.
e recl_network_id (int) — An identifier for the river network associated with the current
run.
* recl_network (nx.Graph) — The RECI river network, a directed graph, used to identify
edges that are connected to the end nodes of their respective sea-draining catchments.
» recl_network_data (gpd.GeoDataFrame)— A GeoDataFrame containing the RECI river
network data with added edge directions.
Returns
A GeoDataFrame containing the modified river network data with REC1 geometries removed if
they are not connected to their end nodes within their respective sea-draining catchments.
Return type
gpd.GeoDataFrame
src.dynamic_boundary_conditions.river.river_network_for_aoi.build_recl_river_network(engine:
sqlalchemy.engine.Engi
catch-
ment_area:
geopan-

das.GeoDataFrame,
recl_network_id:

int)

—

Tu-
ple[networkx.DiGraph,
geopandas.GeoDataFrar
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Builds a river network for the catchment area using the REC1 data.
Parameters
* engine (Engine) — The engine used to connect to the database.

» catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

e recl_network_id (int) — An identifier for the river network associated with the current
run.

Returns
A tuple containing the constructed REC1 river network, represented as a directed graph (Di-
Graph), along with its associated data in the form of a GeoDataFrame.

Return type
Tuple[nx.DiGraph, gpd.GeoDataFrame]

src.dynamic_boundary_conditions.river.river_network_for_aoi.get_recl_river_network(engine:
sqlalchemy.engine.Engine,
catch-
ment_area.
geopan-
das.GeoDataFrame)
— Tu-
ple[networkx.Graph,
geopandas.GeoDataFrame

Retrieve or create REC1 river network for the specified catchment area.
Parameters
* engine (Engine) — The engine used to connect to the database.

» catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

Returns
A tuple containing the REC1 river network as a directed graph (DiGraph) and its associated data
as a GeoDataFrame.

Return type
Tuple[nx.Graph, gpd.GeoDataFrame]

src.dynamic_boundary_conditions.river.river_network_to_from_db

This script handles the following tasks: storing both the RECI river network and its associated data in files along with
their metadata in the database, retrieving the existing REC1 river network and its associated data from the database,
and managing the addition of REC1 geometries that have been excluded from the river network in the database, as well
as retrieving them for an existing REC1 river network.
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Module Contents

Functions

get_next_network_id(— int)
add_network_exclusions_to_db(— None)

get_new_network_output_paths(—
ple[pathlib.Path, ...)

get_network_output_metadata(— Tuple[str, str,
str])
store_recl_network_to_db(— None)

get_existing network_metadata_from_db(...)

get_existing_network(— Tuple[networkx.Graph,

)

Get the next available REC1 River Network ID from the
River Network Exclusions table.

Add RECI1 geometries that are excluded from the river
network for the current run in the database.

Get new file paths that incorporate the current timestamp
into the filenames for storing both the REC1 Network
and

Get metadata associated with the REC1 Network.

Store both the RECI river network and its associated
data in files, and their metadata in the database.
Retrieve existing REC1 river network metadata for the
specified catchment area from the database.

Retrieve existing REC1 river network and its associated
data.

Attributes

log

src.dynamic_boundary_conditions.river.river_network_to_from_db.log

src.dynamic_boundary_conditions.river.river_network_to_from_db.get_next_network_id(engine:

sqlalchemy.engine.Engine

— int

Get the next available REC1 River Network ID from the River Network Exclusions table.

Parameters

engine (Engine) — The engine used to connect to the database.

Returns

An identifier for the river network associated with each run, representing the next available River

Network ID.

Return type
int
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src.dynamic_boundary_conditions.river.river_network_to_from_db.add_network_exclusions_to_db (engine:
sqlalchemy.eng
recl_network_
int,
recl_network_
geopan-
das.GeoDataF
ex-
clu-
sion_cause:
Str)
_>
None

Add RECI1 geometries that are excluded from the river network for the current run in the database.
Parameters
* engine (Engine) — The engine used to connect to the database.

e recl_network_id (int) — An identifier for the river network associated with the current
run.

* recl_network_exclusions (gpd.GeoDataFrame) — A GeoDataFrame containing the
RECI1 geometries that are excluded from the river network for the current run.

» exclusion_cause (str)—Cause of exclusion, i.e., the reason why the RECI1 river geometry
was excluded.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.river.river_network_to_from_db.get_new_network_output_paths()
_>
Tu-
ple[pathlib.Pat
pathlib.Path]

Get new file paths that incorporate the current timestamp into the filenames for storing both the REC1 Network
and its associated data.

Returns
A tuple containing the file path to the REC1 Network and the file path to the REC1 Network data.

Return type
Tuple[pathlib.Path, pathlib.Path]
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src.dynamic_boundary_conditions.river.river_network_to_from_db.get_network_output_metadata(network_path:
path-
lib.Path,
net-
work_data_path
path-
lib.Path,
catch-
ment_area:
geopan-
das.GeoDataFr
_>
Tu-
ple[str,
str,
str]

Get metadata associated with the REC1 Network.
Parameters
» network_path (pathlib.Path) — The path to the REC1 Network file.
* network_data_path (pathlib.Path) — The path to the REC1 Network data file.

e catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

Returns
A tuple containing the absolute path to the REC1 Network file as a string, the absolute path to
the REC1 Network data file as a string, and the Well-Known Text (WKT) representation of the
catchment area’s geometry.

Return type
Tuple[str, str, str]

src.dynamic_boundary_conditions.river.river_network_to_from_db.store_recl_network_to_db(engine:
sqlalchemy.engine.I
catch-
ment_area:
geopan-
das.GeoDataFrame
recl_network_id:
nt,
recl_network:
net-
workx.Graph,
recl_network_data:
geopan-
das.GeoDataFrame
_>
None

Store both the REC1 river network and its associated data in files, and their metadata in the database.
Parameters

* engine (Engine) — The engine used to connect to the database.
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» catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

e recl_network_id (int) — An identifier for the river network associated with the current
run.

» recl_network (nx.Graph) — The constructed REC1 river network, represented as a di-
rected graph (DiGraph).

» recl_network_data (gpd.GeoDataFrame)— A GeoDataFrame containing the RECI river
network data.

Returns
This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.river.river_network_to_from_db.get_existing_network_metadata_from_db (en;
sql
cat
me
gec
da
_>
gec

Retrieve existing REC1 river network metadata for the specified catchment area from the database.
Parameters
* engine (Engine) — The engine used to connect to the database.

» catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

Returns
A GeoDataFrame containing the existing REC1 river network metadata for the specified catch-
ment area.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.river.river_network_to_from_db.get_existing_network(engine:
sqlalchemy.engine.Engin
exist-
ing_network_meta:
geopan-
das.GeoDataFrame)
— Tu-
ple[networkx.Graph,
geopandas.GeoDataFram

Retrieve existing REC1 river network and its associated data.
Parameters
* engine (Engine) — The engine used to connect to the database.

* existing_network_meta (gpd.GeoDataFrame)— A GeoDataFrame containing the meta-
data for the existing REC1 river network.
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Returns
A tuple containing the existing REC1 river network as a directed graph (DiGraph) and its asso-
ciated data as a GeoDataFrame.

Return type
Tuple[nx.Graph, gpd.GeoDataFrame]

src.dynamic_boundary_conditions.tide
Submodules
src.dynamic_boundary_conditions.tide.main_tide_slr

Main tide and sea level rise script used to fetch tide data, read and store sea level rise data in the database, and generate
the requested tide uniform boundary model input for BG-Flood etc.

Module Contents

Functions

remove_existing_boundary_inputs(— None) Remove existing uniform boundary input files from the
specified directory.

get_or_load_tide_data_for_demo(tide_query_loc, Retrieve or load tide data for demonstration.

)

main(— None) Fetch tide data, read and store sea level rise data in the
database, and generate the requested tide

Attributes

log

sample_polygon

src.dynamic_boundary_conditions.tide.main_tide_slr.log

src.dynamic_boundary_conditions.tide.main_tide_slr.remove_existing_boundary_inputs(bg_flood_dir:

path-
lib.Path)
— None
Remove existing uniform boundary input files from the specified directory.
Parameters
bg_flood_dir (pathlib.Path)—BG-Flood model directory containing the uniform boundary
input files.
Returns

This function does not return any value.
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Return type
None

src.dynamic_boundary_conditions.tide.main_tide_slr.get_or_load_tide_data_for_demo (tide_query_loc:
geopan-
das.GeoDataFrame,
tide_length_mins:
int,
time_to_peak_mins:
int | float,
inter-
val_mins:
int)
Retrieve or load tide data for demonstration.
Parameters

* tide_query_loc (gpd. GeoDataFrame) — A GeoDataFrame containing the locations used
to fetch tide data from NIWA using the tide API.

* tide_length_mins (int) — The length of the tide event in minutes.

e time_to_peak_mins (Union[int, float])- The time in minutes when the tide is at its
greatest (reaches maximum).

e interval_mins (int) — The time interval, in minutes, between each recorded tide data
point.

Returns
A GeoDataFrame containing the retrieved or loaded tide data for demonstration.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.tide.main_tide_slr.main(selected_polygon_gdf:
geopandas.GeoDataFrame,
tide_length_mins: int, time_to_peak_mins:
int | float, interval_mins: int, proj_year:
int, confidence_level: str, ssp_scenario:
str, add_vim: bool, percentile: int,
log_level: src.digitaltwin.utils.LogLevel =
LogLevel DEBUG) — None

Fetch tide data, read and store sea level rise data in the database, and generate the requested tide uniform boundary
model input for BG-Flood.

Parameters

» selected_polygon_gdf (gpd.GeoDataFrame) — A GeoDataFrame representing the se-
lected polygon, i.e., the catchment area.

* tide_length_mins (int) — The length of the tide event in minutes.

e time_to_peak_mins (Union[int, float])- The time in minutes when the tide is at its
greatest (reaches maximum).

e interval_mins (int) — The time interval, in minutes, between each recorded tide data
point.

* proj_year (int) — The projection year for which the combined tide and sea level rise data
should be generated.
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Returns

confidence_level (str) — The desired confidence level for the sea level rise data. Valid
values are ‘low’ or ‘medium’.

ssp_scenario (str) — The desired Shared Socioeconomic Pathways (SSP) scenario for
the sea level rise data. Valid options for both low and medium confidence are: ‘SSP1-2.6’,
‘SSP2-4.5°, or ‘SSP5-8.5’. Additional options for medium confidence are: ‘SSP1-1.9” or
‘SSP3-7.0.

add_vlm (bool) — Indicates whether Vertical Land Motion (VLM) should be included in
the sea level rise data. Set to True if VLM should be included, False otherwise.

percentile (int) — The desired percentile for the sea level rise data. Valid values are 17,
50, or 83.

log_level (LogLevel = LogLevel.DEBUG) — The log level to set for the root logger.
Defaults to LogLevel. DEBUG. The available logging levels and their corresponding numeric
values are: - LogLevel.CRITICAL (50) - Loglevel. ERROR (40) - LogLevel. WARNING
(30) - LogLevel.INFO (20) - LogLevel. DEBUG (10) - LogLevel. NOTSET (0)

This function does not return any value.

Return type
None

src.dynamic_boundary_conditions.tide.main_tide_slr.sample_polygon

src.dynamic_boundary_conditions.tide.sea_level_rise_data

This script handles the reading of sea level rise data from the NZ Sea level rise datasets, storing the data in the database,

and retrieving the closest sea level rise data from the database for all locations in the provided tide data.

Module Contents

Functions
get_slr_data_from_nz_searise(— geopan- Read sea level rise data from the NZ Sea level rise
das.GeoDataFrame) datasets and return a GeoDataFrame.
store_slr_data_to_db(— None) Store sea level rise data to the database.
get_closest_slr data(— geopan-  Retrieve the closest sea level rise data for a single query
das.GeoDataFrame) location from the database.
get_slr_data_from_db(— geopan-  Retrieve the closest sea level rise data from the database
das.GeoDataFrame) for all locations in the provided tide data.

76 Chapter 1. API Reference



Flood Resilience Digital Twin (FReDT), Release 0.1.0

Attributes

log

src.dynamic_boundary_conditions.tide.sea_level_rise_data.log

src.dynamic_boundary_conditions.tide.sea_level_rise_data.get_slr_data_from_nz_searise() —
geopandas.GeoDataFr:

Read sea level rise data from the NZ Sea level rise datasets and return a GeoDataFrame.

Returns
A GeoDataFrame containing the sea level rise data from the NZ Sea level rise datasets.

Return type
gpd.GeoDataFrame

Raises
FileNotFoundError - If the sea level rise data directory does not exist or if there are no CSV
files in the specified directory.
src.dynamic_boundary_conditions.tide.sea_level_rise_data.store_slr_data_to_db(engine:
sqlalchemy.engine.Engine)
— None

Store sea level rise data to the database.

Parameters
engine (Engine) — The engine used to connect to the database.

Returns
This function does not return any value.

Return type
None
src.dynamic_boundary_conditions.tide.sea_level_rise_data.get_closest_slr_data(engine:
sqlalchemy.engine.Engine,
sin-
gle_query_loc:
pan-
das.Series) —
geopandas.GeoDataFrame

Retrieve the closest sea level rise data for a single query location from the database.
Parameters
* engine (Engine) — The engine used to connect to the database.

* single_query_loc (pd. Series) — Pandas Series containing the location coordinate and
additional information used for retrieval.

Returns
A GeoDataFrame containing the closest sea level rise data for the query location from the

database.

Return type
gpd.GeoDataFrame
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src.dynamic_boundary_conditions.tide.sea_level_rise_data.get_slr_data_from_db(engine:
sqlalchemy.engine.Engine,
tide_data:
geopan-
das.GeoDataFrame)
_>
geopandas.GeoDataFrame

Retrieve the closest sea level rise data from the database for all locations in the provided tide data.
Parameters
* engine (Engine) — The engine used to connect to the database.

* tide_data (gpd. GeoDataFrame) — A GeoDataFrame containing tide data with added time
information (seconds, minutes, hours) and location details.

Returns
A GeoDataFrame containing the closest sea level rise data for all locations in the tide data.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.tide.tide_data_from_niwa

Fetch tide data from NIWA using the Tide API based on the specified approach, datum, etc.

Module Contents
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Functions

get_query_loc_coords_position(— Tuple[float,
float, str])
get_date_ranges(, total_days, days_per_call, int])

gen_api_query_param_list(—
Union(str, ...)
fetch_tide_data(— geopandas.GeoDataFrame)

List[Dict[str,

fetch_tide_data_for_requested_period(...)

convert_to_nz_timezone(— geopan-
das.GeoDataFrame)

fetch_tide_data_from _niwa(, total_days, inter-
val_mins)

get_highest_tide_datetime(— pan-
das.Timestamp)
get_highest_tide_datetime_span(...)
get_highest_tide_date_span(— Tu-

ple[datetime.date, int])
fetch_tide_data_around_highest_tide(...)

get_time_mins_to_add(— List[Union[float, int]])
add_time_information(— geopan-
das.GeoDataFrame)

get_tide_data(, total_days, tide_length_mins, ...)

Get the latitude, longitude, and position of a query loca-
tion.

Get the start date and duration, measured in days, for
each API call used to fetch tide data for the

Generate a list of API query parameters used to retrieve
tide data for the requested period.

Fetch tide data using the provided query parameters
within a single API call.

Iterate over the list of API query parameters to fetch tide
data for the requested period.

Convert the time column in the initially retrieved tide
data for the requested period from UTC to NZ timezone.
Retrieve tide data from NIWA for the requested time pe-
riod using the Tide API.

Get the datetime of the most recent highest tide that oc-
curred within the requested time period.

Get the start and end datetimes of a tide event centered
around the datetime of the highest tide.

Get the start date and duration in days of a tide event
centered around the datetime of the highest tide.

Fetch tide data around the highest tide from NIWA for
the specified tide length and interval.

Get the time values in minutes to add to the tide data.
Add time information (seconds, minutes, hours) to the
tide data.

Fetch tide data from NIWA using the Tide API based on
the specified approach, datum, and other parameters.

Attributes

TIDE_API_URL_DATA

TIDE_API_URL_DATA_CSV

src.dynamic_boundary_conditions.tide.tide_data_from_niwa.TIDE_API_URL_DATA

src.dynamic_boundary_conditions.tide.tide_data_from_niwa.TIDE_API_URL_DATA_CSV

src.dynamic_boundary_conditions.tide.tide_data_from_niwa.get_query_loc_coords_position(query_loc_row:
geopan-
das.GeoDataFrame)

%
Tu-

ple[float,

float,
str]

Get the latitude, longitude, and position of a query location.
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Parameters
query_loc_row (gpd. GeoDataFrame) — A GeoDataFrame representing a query location used
to fetch tide data from NIWA using the tide APL

Returns
A tuple containing the latitude, longitude, and position of the query location.

Return type
Tuple[float, float, str]

src.dynamic_boundary_conditions.tide.tide_data_from_niwa.get_date_ranges(start_date:
datetime.date =
date.today(),
total_days: int =
365, days_per_call:
int=31) —
Dict[datetime.date,
int]
Get the start date and duration, measured in days, for each API call used to fetch tide data for the requested period.
Parameters

» start_date (date = date.today ()) — The start date for retrieving tide data. It can be
in the past or present. Default is today’s date.

* total_days (int = 365) — The total number of days of tide data to retrieve. Default is
365 days (one year).

» days_per_call (int = 31) — The number of days to fetch in each API call. Must be
between 1 and 31 inclusive. Default is 31, which represents the maximum number of days
that can be fetched per API call.

Returns
A dictionary containing the start date as the key and the duration, in days, for each API call as
the value.

Return type
Dict[date, int]

Raises
ValueError —

* If ‘total_days’ is less than 1.

 If ‘days_per_call’ is not between 1 and 31 inclusive.
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src.dynamic_boundary_conditions.tide.tide_data_from_niwa.gen_api_query_param_list(las: int |
float,
long: int
| float,
date_ranges:
Dict[datetime.date,
int],
inter-
val_mins:
int | None
= None,
datum:
src.dynamic_boundary_con
= Datum-
Type.LAT)
_>
List[Dict[str,
str | int]]

Generate a list of API query parameters used to retrieve tide data for the requested period.
Parameters
e lat (Union[int, float]) - Latitude in the range of -29 to -53 (e.g., -30.876).

* long (Union[int, float])- Longitude in the range of 160 to 180 and -175 to -180 (e.g.,
-175.543).

» date_ranges (Dict[date, int])- Dictionary of start date and number of days for each
API call needed to retrieve tide data for the requested period.

e interval_mins (Optional[int] = None) - Output time interval in minutes, range from
10 to 1440 minutes (1 day). Omit to retrieve only the highest and lowest tide data.

» datum (DatumType = DatumType.LAT)— Datum used for fetching tide data from NIWA.
Default value is LAT. Valid options are LAT for the Lowest Astronomical Tide and MSL for
the Mean Sea Level.

Returns
A list of API query parameters used to retrieve tide data for the requested period.

Return type
List[Dict[str, Union[str, int]]]

Raises
ValueError —

* If the latitude is outside the range of -29 to -53.
* If the longitude is outside the range of 160 to 180 or -175 to -180.
* If the time interval is provided and outside the range of 10 to 1440.

async src.dynamic_boundary_conditions.tide.tide_data_from_niwa.fetch_tide_data(session: aio-
http.ClientSession,
query_param:
Dict/[str, str |
int], url: str
TIDE_API_URL_DATA)
%
geopandas.GeoDataFrame
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Fetch tide data using the provided query parameters within a single API call.
Parameters

» session(aiohttp.ClientSession)— An instance of aiohttp.ClientSession used for mak-
ing HTTP requests.

* query_param (Dict[str, Union[str, int]])-The query parameters used to retrieve
tide data for a specific location and time period.

e url (str = TIDE_API_URL_DATA) — Tide API HTTP request URL. Defaults to ‘https://
api.niwa.co.nz/tides/data’. Can be either ‘https://api.niwa.co.nz/tides/data’ or ‘https://api.
niwa.co.nz/tides/data.csv’.

Returns
A GeoDataFrame containing the fetched tide data.

Return type
gpd.GeoDataFrame

async src.dynamic_boundary_conditions.tide.tide_data_from_niwa.fetch_tide_data_for_requested_period(quer
List|
Str

I
int]|
url:
Str

TID.
ﬁ

8e0]
Iterate over the list of API query parameters to fetch tide data for the requested period.

Parameters

e query_param_list (List[Dict[str, Union[str, int]]])- A list of API query pa-
rameters used to retrieve tide data for the requested period.

e url (str = TIDE_API_URL_DATA) — Tide API HTTP request URL. Defaults to ‘https://
api.niwa.co.nz/tides/data’. Can be either ‘https://api.niwa.co.nz/tides/data’ or ‘https://api.
niwa.co.nz/tides/data.csv’.

Returns
A GeoDataFrame containing the fetched tide data for the requested period.

Return type
gpd.GeoDataFrame

Raises
» ValueError - If an invalid URL is specified for the Tide API HTTP request.
* RuntimeError - If failed to fetch tide data.

src.dynamic_boundary_conditions.tide.tide_data_from_niwa.convert_to_nz_timezone (tide_data_utc:
geopan-
das.GeoDataFrame)
N
geopandas.GeoDataFrame

Convert the time column in the initially retrieved tide data for the requested period from UTC to NZ timezone.
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Parameters
tide_data_utc (gpd. GeoDataFrame) — The original tide data obtained for the requested pe-
riod with the time column expressed in UTC.

Returns
The tide data with the time column converted to NZ timezone.

Return type
gpd.GeoDataFrame
src.dynamic_boundary_conditions.tide.tide_data_from_niwa.fetch_tide_data_from_niwa(tide_query_ loc:
geopan-
das.GeoDataFrame,
datum:

src.dynamic_boundary_co

Datum-
Type.LAT,
start_date:
date-
time.date
date.today(),
to-

tal_days:

int =

365,

inter-
val_mins:
int |

None =
None)

N
geopandas.GeoDataFrame

Retrieve tide data from NIWA for the requested time period using the Tide APIL
Parameters

* tide_query_loc (gpd.GeoDataFrame) — A GeoDataFrame containing the query coordi-
nates and their positions.

e datum (DatumType = DatumType.LAT)— Datum used for fetching tide data from NIWA.
Default value is LAT. Valid options are LAT for the Lowest Astronomical Tide and MSL for
the Mean Sea Level.

* start_date (date = date.today()) — The start date for retrieving tide data. It can be
in the past or present. Default is today’s date.

* total_days (int = 365) — The total number of days of tide data to retrieve. Default is
365 days (one year).

» interval_mins (Optional[int] = None)— Output time interval in minutes, range from
10 to 1440 minutes (1 day). Omit to retrieve only the highest and lowest tide data.

Returns
A GeoDataFrame containing the fetched tide data from NIWA for the requested time period.

Return type
gpd.GeoDataFrame
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src.dynamic_boundary_conditions.tide.tide_data_from_niwa.get_highest_tide_datetime (tide_data:
geopan-
das.GeoDataFrame)
*>
pandas. Timestamp

Get the datetime of the most recent highest tide that occurred within the requested time period.

Parameters
tide_data (gpd.GeoDataFrame) — The tide data fetched from NIWA for the requested time
period. The time column is expressed in NZ timezone, which was converted from UTC.

Returns
The datetime of the most recent highest tide that occurred within the requested time period.

Return type
pd. Timestamp

src.dynamic_boundary_conditions.tide.tide_data_from_niwa.get_highest_tide_datetime_span(highest_tide_datetir
pan-
das.Timestamp,
tide_length_mins:
int)
_>
Tu-
ple[pandas.Timestar
pandas.Timestamp]

Get the start and end datetimes of a tide event centered around the datetime of the highest tide.
Parameters

* highest_tide_datetime (pd. Timestamp)— The datetime of the most recent highest tide
that occurred within the requested time period.

* tide_length_mins (int) — The length of the tide event in minutes.

Returns
A tuple containing the start and end datetimes of the tide event centered around the datetime of
the highest tide.

Return type
Tuple[pd.Timestamp, pd.Timestamp]

src.dynamic_boundary_conditions.tide.tide_data_from_niwa.get_highest_tide_date_span(start_datetime:
pan-
das.Timestamp,
end_datetime:
pan-
das.Timestamp)
— Tu-
ple[datetime.date,
int]
Get the start date and duration in days of a tide event centered around the datetime of the highest tide.
Parameters

e start_datetime (pd. Timestamp) — The start datetime of the tide event centered around
the datetime of the highest tide.

e end_datetime (pd. Timestamp) — The end datetime of the tide event centered around the
datetime of the highest tide.
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Returns
A tuple containing the start date and the duration in days of a tide event centered around the
datetime of the highest tide.

Return type
Tuple[date, int]

src.dynamic_boundary_conditions.tide.tide_data_from_niwa.fetch_tide_data_around_highest_tide(tide_data:
geopan-
das.GeoData
tide_length_r
int,
in-
ter-
val_mins:
int

10,

da-

tum:
src.dynamic_

Da-

tum-
Type.LAT)
%
geopandas.Ge

Fetch tide data around the highest tide from NIWA for the specified tide length and interval.
Parameters

» tide_data (gpd. GeoDataFrame)— The tide data fetched from NIWA for the requested time
period. The time column is expressed in NZ timezone, which was converted from UTC.

* tide_length_mins (int) — The length of the tide event in minutes.

e interval_mins (int = 10) — The time interval, in minutes, between each recorded tide
data point. The default value is 10 minutes.

» datum (DatumType = DatumType.LAT)— Datum used for fetching tide data from NIWA.
Default value is LAT. Valid options are LAT for the Lowest Astronomical Tide and MSL for
the Mean Sea Level.

Returns
The tide data around the highest tide, fetched from NIWA, for the specified tide length and inter-
val.

Return type
gpd.GeoDataFrame
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src.dynamic_boundary_conditions.tide.tide_data_from_niwa.get_time_mins_to_add (tide_data:

Get the time values in minutes to add to the tide data.

Parameters

geopan-
das.GeoDataFrame,
tide_length_mins:
nt,
time_to_peak_mins:
int | float,
interval_mins:
int=10) —
List[float | int]

e tide_data (gpd.GeoDataFrame) — The tide data for which time values in minutes will be

calculated.

* tide_length_mins (int) — The length of the tide event in minutes.

e time_to_peak_mins (Union[int, float])- The time in minutes when the tide is at its

greatest (reaches maximum).

e interval_mins (int = 10) — The time interval, in minutes, between each recorded tide

data point. The default value is 10 minutes.

Returns

A list containing the time values in minutes to add to the tide data.

Return type
List[Union[float, int]]

src.dynamic_boundary_conditions.tide.tide_data_from_niwa.add_time_information (tide_data:

Add time information (seconds, minutes, hours) to the tide data.

Parameters

geopan-
das.GeoDataFrame,
time_to_peak_mins:

int | float,

interval_mins:

int =10,

tide_length_mins:

int | None =

None,

total_days: int

| None =

None,

approach:
src.dynamic_boundary_conditior
= Ap-

proachType. KING _TIDE)

N

geopandas.GeoDataFrame

e tide_data (gpd.GeoDataFrame)— The tide data for which time information will be added.

e time_to_peak_mins (Union[int, float])— The time in minutes when the tide is at its

greatest (reaches maximum).
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e interval_mins (int = 10) — The time interval, in minutes, between each recorded tide
data point. The default value is 10 minutes.

* tide_length _mins (Optional[int] = None) - The length of the tide event in minutes.
Only required if the ‘approach’ is KING_TIDE.

» total_days (Optional[int] = None)- The total number of days for the tide event. Only
required if the ‘approach’ is PERIOD_TIDE.

* approach (ApproachType = ApproachType.KING_TIDE)- The approach used to get the
tide data. Default is KING_TIDE.

Returns
The tide data with added time information in seconds, minutes, and hours.

Return type
gpd.GeoDataFrame

Raises
ValueError - If ‘time_to_peak_mins’ is less than the minimum time to peak.

Notes

The minimum time to peak is calculated differently depending on the approach used: - For the KING_TIDE
approach, it is half of the ‘tide_length_mins’. - For the PERIOD_TIDE approach, it is half of the ‘total_days’
converted to minutes.

src.dynamic_boundary_conditions.tide.tide_data_from_niwa.get_tide_data(tide_query_loc:
geopan-
das.GeoDataFrame,
time_to_peak_mins: int
| float, approach:
src.dynamic_boundary_conditions.tide.tid
= Ap-
proachType. KING_TIDE,
start_date:
datetime.date =
date.today(),
total_days: int | None =
None,
tide_length_mins: int |
None = None,
interval_mins: int = 10,
datum:
src.dynamic_boundary_conditions.tide.tid
= DatumType.LAT) —
geopandas.GeoDataFrame

Fetch tide data from NIWA using the Tide API based on the specified approach, datum, and other parameters.
Parameters

» tide_query_loc (gpd.GeoDataFrame) — A GeoDataFrame containing the query coordi-
nates and their positions.

e time_to_peak_mins (Union[int, float])- The time in minutes when the tide is at its
greatest (reaches maximum).

1.1. src 87



Flood Resilience Digital Twin (FReDT), Release 0.1.0

* approach (ApproachType = ApproachType.KING_TIDE)- The approach used to get the
tide data. Default is KING_TIDE.

» start_date (date = date.today()) — The start date for retrieving tide data. It can be
in the past or present. Default is today’s date.

» total_days(Optional[int] = None)- The total number of days for the tide event. Only
required if the ‘approach’ is PERIOD_TIDE.

* tide_length _mins (Optional[int] = None) - The length of the tide event in minutes.
Only required if the ‘approach’ is KING_TIDE.

e interval_mins (int = 10) — The time interval, in minutes, between each recorded tide
data point. The default value is 10 minutes.

e datum (DatumType = DatumType.LAT)— Datum used for fetching tide data from NIWA.
Default value is LAT. Valid options are LAT for the Lowest Astronomical Tide and MSL for
the Mean Sea Level.

Returns
The tide data with added time information in seconds, minutes, and hours.

Return type
gpd.GeoDataFrame

Raises
ValueError —

e If ‘interval_mins’ is None.
o If the ‘approach’ is KING_TIDE and ‘tide_length_mins’ is None or ‘total_days’ is not None.

o If the ‘approach’ is PERIOD_TIDE and ‘total_days’ is None or ‘tide_length_mins’ is not
None.

src.dynamic_boundary_conditions.tide.tide_enum

Enum(s) used in the tide_slr module.

Module Contents

Classes
DatumType Enum class representing different datum types.
ApproachType Enum class representing different types of approaches.

class src.dynamic_boundary_conditions.tide.tide_enum.DatumType
Bases: enum. StrEnum

Enum class representing different datum types.
LAT

Lowest astronomical tide.

Type
str
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MSL
Mean sea level.
Type
str
LAT = 'lat'
MSL = 'msl’'

class src.dynamic_boundary_conditions.tide.tide_enum.ApproachType

Bases: enum. StrEnum

Enum class representing different types of approaches.

KING_TIDE
King Tide approach.

Type

str
PERIOD_TIDE
Period Tide approach.

Type

str

KING_TIDE = 'king_tide'

PERIOD_TIDE = 'period_tide'

src.dynamic_boundary_conditions.tide.tide_query_location

Get the locations used to fetch tide data from NIWA using the tide API. sli229

Module Contents

Functions

get_regional_council_clipped_from_db(...)

get_nz_coastline_from_db(— geopan-
das.GeoDataFrame)
get_catchment_boundary_info(— geopan-
das.GeoDataFrame)
get_catchment_boundary_lines(— geopan-

das.GeoDataFrame)
get_catchment_boundary_centroids(— geopan-
das.GeoDataFrame)
get_non_intersection_centroid_position(...)

get_tide_query_locations(—
das.GeoDataFrame)

geopan-

Retrieve regional council clipped data from the database
based on the catchment area.

Retrieve the New Zealand coastline data within a speci-
fied distance of the catchment area from the database.
Get information about the boundary segments of the
catchment area.

Get the boundary lines of the catchment area.

Get the centroids of the boundary lines of the catchment
area.

Determine the positions of non-intersection centroid
points relative to the boundary lines of the catchment
area.

Get the locations used to fetch tide data from NIWA us-
ing the tide APL
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exception src.dynamic_boundary_conditions.tide.tide_query_location.NoTideDataException

Bases: Exception
Exception raised when no tide data is to be used for the BG-Flood model.

src.dynamic_boundary_conditions.tide.tide_query_location.get_regional_council_clipped_from_db (engine:
sqlalchemy.
catch-
ment_area:
geopan-
das.GeoDat
_)
geopandas.(

Retrieve regional council clipped data from the database based on the catchment area.
Parameters
* engine (Engine) — The engine used to connect to the database.

» catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

Returns
A GeoDataFrame containing the regional council clipped data for the catchment area.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.tide.tide_query_location.get_nz_coastline_from_db (engine:
sqlalchemy.engine.Engine,
catch-
ment_area:
geopan-
das.GeoDataFrame,
dis-
tance_km:
int=1)
_>
geopandas.GeoDataFrame

Retrieve the New Zealand coastline data within a specified distance of the catchment area from the database.
Parameters
* engine (Engine) — The engine used to connect to the database.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

e distance_km (int = 1) — Distance in kilometers used to buffer the catchment area for
coastline retrieval. Default is 1 kilometer.

Returns
A GeoDataFrame containing the New Zealand coastline data within the specified distance of the
catchment area.

Return type
gpd.GeoDataFrame
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src.dynamic_boundary_conditions.tide.tide_query_location.get_catchment_boundary_info (catchment_area:
geopan-
das.GeoDataFrame)
N
geopandas.GeoDataFrar

Get information about the boundary segments of the catchment area.

Parameters
catchment_area (gpd. GeoDataFrame) — A GeoDataFrame representing the catchment area.

Returns
A GeoDataFrame containing information about the boundary segments of the catchment area.

Return type
gpd.GeoDataFrame

Raises
ValueError - If the position of a catchment boundary line cannot be identified.

src.dynamic_boundary_conditions.tide.tide_query_location.get_catchment_boundary_lines(catchment_area:
geopan-
das.GeoDataFrame)
_>
geopandas.GeoDataFr:

Get the boundary lines of the catchment area.

Parameters
catchment_area (gpd. GeoDataFrame) — A GeoDataFrame representing the catchment area.

Returns
A GeoDataFrame containing the boundary lines of the catchment area.

Return type
gpd.GeoDataFrame
src.dynamic_boundary_conditions.tide.tide_query_location.get_catchment_boundary_centroids (catchment area:
geopan-
das.GeoDataFrar
_)
geopandas.GeoD

Get the centroids of the boundary lines of the catchment area.

Parameters
catchment_area (gpd. GeoDataFrame) — A GeoDataFrame representing the catchment area.

Returns
A GeoDataFrame containing the centroids of the boundary lines of the catchment area.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.tide.tide_query_location.get_non_intersection_centroid_position(catchmen
geopan-
das.GeolL
non_inter
geopan-
das.GeolL
—
geopanda
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Determine the positions of non-intersection centroid points relative to the boundary lines of the catchment area.
Parameters

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

* non_intersection_area (gpd.GeoDataFrame) — A GeoDataFrame representing the
non-intersection area.

Returns
A GeoDataFrame containing the positions of non-intersection centroid points relative to the
catchment boundary lines. The GeoDataFrame includes the ‘position’ column denoting the rela-
tive position and the ‘geometry’ column representing the centroid points of the non-intersection
areas.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.tide.tide_query_location.get_tide_query_locations(engine:
sqlalchemy.engine.Engine,
catch-
ment_area:
geopan-
das.GeoDataFrame,
dis-
tance_km:
int=1)
_>
geopandas.GeoDataFrame

Get the locations used to fetch tide data from NIWA using the tide API.
Parameters
* engine (Engine) — The engine used to connect to the database.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

e distance_km (int = 1) — Distance in kilometers used to buffer the catchment area for
coastline retrieval. Default is 1 kilometer.

Returns
A GeoDataFrame containing the locations used to fetch tide data from NIWA using the tide APL.

Return type
gpd.GeoDataFrame

Raises
NoTideDataException — If no coastline is found within the specified distance of the catchment
area.

92 Chapter 1. API Reference



Flood Resilience Digital Twin (FReDT), Release 0.1.0

src.dynamic_boundary_conditions.tide.tide_slr_combine

Generates combined tide and sea level rise (SLR) data for a specific projection year, taking into account the provided
confidence level, SSP scenario, inclusion of Vertical Land Motion (VLM), percentile, and more.

Module Contents

Functions

split_slr_measurementname_column(— geopan-
das.GeoDataFrame)
get_slr_scenario_data(—
das.GeoDataFrame)

geopan-

get_interpolated_slr_scenario_data(...)
add_slr_to_tide(— pandas.DataFrame)

get_combined_tide_slr_data(—
das.DataFrame)

pan-

Split the 'measurementname' column in the sea level rise
data to extract and add additional information.

Get sea level rise scenario data based on the speci-
fied confidence_level, ssp_scenario, add_vlm, and per-
centile.

Interpolates sea level rise scenario data based on the
specified year interval and interpolation method.

Adds sea level rise (SLR) data to the tide data for a spe-
cific projection year and

Generates the combined tide and sea level rise (SLR)
data for a specific projection year, considering the given

src.dynamic_boundary_conditions.tide.tide_slr_combine.split_slr_measurementname_column(sir_data:
geopan-
das.GeoDataFrame)
_>
geopandas.GeoDataF

Split the ‘measurementname’ column in the sea level rise data to extract and add additional information.

Parameters
slr_data (gpd. GeoDataFrame) — A GeoDataFrame containing the sea level rise data.

Returns
A GeoDataFrame containing the sea level rise data with additional columns for extracted infor-
mation: ‘confidence_level’, ‘ssp_scenario’, and ‘add_vlm’.

Return type
gpd.GeoDataFrame

src.dynamic_boundary_conditions.tide.tide_slr_combine.get_slr_scenario_data(sir_data:
geopan-
das.GeoDataFrame,
confidence_level:
str,
SSp_scenario:
str, add_vim:
bool, percentile:
int) —
geopandas.GeoDataFrame

Get sea level rise scenario data based on the specified confidence_level, ssp_scenario, add_vlm, and percentile.
Parameters

» slr_data (gpd. GeoDataFrame) — A GeoDataFrame containing the sea level rise data.
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« confidence_level (str) - The desired confidence level for the scenario data. Valid values
are ‘low’ or ‘medium’.

* ssp_scenario (str) - The desired Shared Socioeconomic Pathways (SSP) scenario for the
scenario data. Valid options for both low and medium confidence are: ‘SSP1-2.6’°, ‘SSP2-

4.5, or ‘SSP5-8.5°. Additional options for medium confidence are: ‘SSP1-1.9” or ‘SSP3-
7.0°.

e add_vlm (bool) - Indicates whether to include Vertical Land Motion (VLM) in the scenario
data. Set to True if VLM should be included, False otherwise.

* percentile (int) — The desired percentile for the scenario data. Valid values are 17, 50,
or 83.

Returns
A GeoDataFrame containing the sea level rise scenario data based on the specified confi-
dence_level, ssp_scenario, add_vlm, and percentile.

Return type
gpd.GeoDataFrame

Raises
ValueError —

* If an invalid ‘confidence_level” value is provided.
o If an invalid ‘ssp_scenario’ value is provided.

* If an invalid ‘add_vlm’ value is provided.

* If an invalid ‘percentile’ value is provided.

src.dynamic_boundary_conditions.tide.tide_slr_combine.get_interpolated_slr_scenario_data(sir_scenario_data.
geopan-
das.GeoDataFram
in-
cre-
ment_year:
int
1,
in-
terp_method:
Str

'lin-

ear")

_>
geopandas.GeoDat

Interpolates sea level rise scenario data based on the specified year interval and interpolation method.
Parameters

* slr_scenario_data (gpd.GeoDataFrame) — A GeoDataFrame containing the sea level
rise scenario data.

e increment_year (int = 1)- The year interval used for interpolation. Defaults to 1 year.

e interp_method (str = "linear')- Temporal interpolation method to be used. Defaults
to ‘linear’. Available methods: ‘linear’, ‘nearest’, ‘nearest-up’, ‘zero’, ‘slinear’, ‘quadratic’,
‘cubic’, ‘previous’, ‘next’. Refer to ‘scipy.interpolate.interp1d()’ for more details.
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Returns
A GeoDataFrame containing the interpolated sea level rise scenario data.

Return type
gpd.GeoDataFrame

Raises
ValueError —

* If the specified ‘increment_year’ is out of range.
o If the specified ‘interp_method’ is not supported.

src.dynamic_boundary_conditions.tide.tide_slr_combine.add_slr_to_tide (tide_data: geopan-
das.GeoDataFrame,
slr_interp_scenario:
geopan-
das.GeoDataFrame,
proj_year: int) —
pandas.DataFrame

Adds sea level rise (SLR) data to the tide data for a specific projection year and returns the combined tide and

sea level rise value.
Parameters

* tide_data (gpd. GeoDataFrame) — A GeoDataFrame containing tide data with added time
information (seconds, minutes, hours) and location details.

» slr_interp_scenario (gpd. GeoDataFrame) — A GeoDataFrame containing the interpo-
lated sea level rise scenario data.

* proj_year (int) — The projection year for which sea level rise data should be added to the
tide data.

Returns
A DataFrame that contains the combined tide and sea level rise data for the specified projection
year.

Return type
pd.DataFrame
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src.dynamic_boundary_conditions.tide.tide_slr_combine.get_combined_tide_slr_data(ride_ data:

geopan-
das.GeoDataFrame,
slr_data:

geopan-
das.GeoDataFrame,
proj_year:

int, confi-
dence_level:

Str,

SSp_scenario:

str,

add_vim:

bool,

percentile:

int, incre-
ment_year:

int=1, in-
terp_method:

str =

'linear")

%
pandas.DataFrame

Generates the combined tide and sea level rise (SLR) data for a specific projection year, considering the given
confidence_level, ssp_scenario, add_vlm, percentile, and more.

Parameters

Returns

tide_data (gpd. GeoDataFrame)— A GeoDataFrame containing tide data with added time
information (seconds, minutes, hours) and location details.

slr_data (gpd. GeoDataFrame) — A GeoDataFrame containing the sea level rise data.

proj_year (int) — The projection year for which the combined tide and sea level rise data
should be generated.

confidence_level (str) — The desired confidence level for the sea level rise data.

ssp_scenario (str)— The desired Shared Socioeconomic Pathways (SSP) scenario for the
sea level rise data.

add_vlm (bool) — Indicates whether Vertical Land Motion (VLM) should be included in
the sea level rise data.

percentile (int) — The desired percentile for the sea level rise data.

increment_year (int = 1) — The year interval used for interpolating the sea level rise
data. Defaults to 1 year.

interp_method (str = "linear") — Temporal interpolation method used for inter-
polating the sea level rise data. Defaults to ‘linear’. Available methods: ‘linear’,
‘nearest’, ‘nearest-up’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, ‘next’. Refer to
‘scipy.interpolate.interp1d()’ for more details.

A DataFrame containing the combined tide and sea level rise data for the specified projection
year, taking into account the provided confidence_level, ssp_scenario, add_vlm, percentile, and
more.
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Return type
pd.DataFrame

src.dynamic_boundary_conditions.tide.tide_slr_model_input

Generates the requested water level uniform boundary model input for BG-Flood.

Module Contents

Functions
generate_uniform_boundary_input(— None) Generates the requested water level uniform boundary
model input for BG-Flood.
Attributes
log

src.dynamic_boundary_conditions.tide.tide_slr_model_input.log

src.dynamic_boundary_conditions.tide.tide_slr_model_input.generate_uniform_boundary_input (bg_flood_dir:
path-
lib.Path,
tide_slr_data:
pan-
das.DataFrame)
_)
None

Generates the requested water level uniform boundary model input for BG-Flood.
Parameters
* bg_flood_dir (pathlib.Path)— The BG-Flood model directory.

* tide_slr_data (pd.DataFrame) — A DataFrame containing the combined tide and sea
level rise data.

Returns
This function does not return any value.

Return type
None
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1.1.1.3 src.flood_model

Submodules

src.flood_model.bg_flood_model

This script handles the processing of input files for the BG-Flood Model, executes the flood model, stores the resulting
model output metadata in the database, and incorporates the model output into GeoServer for visualization.

Module Contents

Functions

get_valid_bg_flood_dir(— pathlib.Path)
get_new_model_output_path(— pathlib.Path)

get_model_output_metadata(— Tuple[str, str, str])
store_model_output_metadata_to_db(— int)

model_output_from_db_by_id(— pathlib.Path)
add_crs_to_latest_model_output(— None)
process_rain_input_files(— None)
process_boundary_input_files(— None)
process_river_input_files(— None)

prepare_bg_flood_model_inputs(— None)
run_bg_flood_model(— None)

main(— int)

Get the valid BG-Flood Model directory.

Get a new file path for saving the BG Flood model output
with the current timestamp included in the filename.
Get metadata related to the BG Flood model output.
Store metadata related to the BG Flood model output in
the database.

Add Coordinate Reference System (CRS) to the latest
BG-Flood model output.

Process rain input files and write their parameter values
to the BG-Flood parameter file.

Process uniform boundary input files and write their pa-
rameter values to the BG-Flood parameter file.

Process river input files, rename them, and write their
parameter values to the BG-Flood parameter file.
Prepare inputs for the BG-Flood Model.

Run the BG-Flood Model for the specified catchment
area.

Generate BG-Flood model output for the requested
catchment area, and incorporate the model output to
GeoServer

Attributes

log
Base

sample_polygon

src.flood_model.bg_flood_model.log
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src.flood_model.bg_flood_model.Base

src.flood_model.bg_flood_model.get_valid_bg_flood_dir() — pathlib.Path
Get the valid BG-Flood Model directory.

Returns
The valid BG-Flood Model directory.

Return type
pathlib.Path

Raises
FileNotFoundError - If the BG-Flood Model directory is not found or is not a valid directory.
src.flood_model.bg_flood_model.get_new_model_output_path() — pathlib.Path
Get a new file path for saving the BG Flood model output with the current timestamp included in the filename.

Returns
The path to the BG Flood model output file.

Return type
pathlib.Path

src.flood_model.bg_flood_model.get_model_output_metadata(model_output_path: pathlib.Path,
catchment_area:
geopandas.GeoDataFrame) — Tuple[str,
str, str]

Get metadata related to the BG Flood model output.
Parameters
» model_output_path (pathlib.Path) — The path to the BG Flood model output file.

e catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

Returns
A tuple containing three elements: the name of the BG Flood model output file, its absolute path
as a string, and the Well-Known Text (WKT) representation of the catchment area’s geometry.

Return type
Tuple[str, str, str]

src.flood_model.bg_flood_model.store_model_output_metadata_to_db(engine:
sqlalchemy.engine.Engine,
model_output_path:
pathlib.Path, catchment_area:
geopandas.GeoDataFrame) —
int
Store metadata related to the BG Flood model output in the database.
Parameters
* engine (Engine) — The engine used to connect to the database.
* model_output_path (pathlib.Path) — The path to the BG Flood model output file.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

Returns
Returns the model id of the new flood_model produced
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Return type
int

src.flood_model.bg_flood_model.model_output_£from_db_by_id(model_id: int) — pathlib.Path

src.flood_model.bg_flood_model.add_crs_to_latest_model_output (flood_model_output_id: int) —
None

Add Coordinate Reference System (CRS) to the latest BG-Flood model output.

Returns
This function does not return any value.

Return type
None
src.flood_model.bg_flood_model.process_rain_input_files(bg_flood_dir: pathlib.Path, param_file:
TextIO) — None
Process rain input files and write their parameter values to the BG-Flood parameter file.

Parameters

* bg_flood_dir (pathlib.Path)-The BG-Flood model directory containing the rain input
files.

» param_file (TextIO)- The file object representing the parameter file where the parameter
values will be written.

Returns
This function does not return any value.

Return type
None

src.flood_model.bg_flood_model.process_boundary_input_files(bg_flood_dir: pathlib.Path,
param_file: TextIO) — None
Process uniform boundary input files and write their parameter values to the BG-Flood parameter file.

Parameters

* bg_flood_dir (pathlib.Path)— The BG-Flood model directory containing the uniform
boundary input files.

e param_file (TextIO)- The file object representing the parameter file where the parameter
values will be written.

Returns
This function does not return any value.

Return type
None

src.flood_model.bg_flood_model.process_river_input_files(bg_flood_dir: pathlib.Path, param_file:
TextlO) — None
Process river input files, rename them, and write their parameter values to the BG-Flood parameter file.

Parameters

* bg_flood_dir (pathlib.Path) - The BG-Flood model directory containing the river in-
put files.

* param_file (TextIO) - The file object representing the parameter file where the parameter
values will be written.
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Returns

This function does not return any value.

Return type
None

src.flood_model.bg_flood_model.prepare_bg_flood_model_inputs(bg_flood_dir: pathlib.Path,

model_output_path: pathlib.Path,
hydro_dem_path: pathlib.Path,
resolution: int | float,
output_timestep: int | float = 0,
end_time: int | float = 0, mask: int |
float = 9999, gpu_device: int = 0,
small_nc: int = 0) — None

Prepare inputs for the BG-Flood Model.

Parameters

Returns

bg_flood_dir (pathlib.Path) — The BG-Flood Model directory.

model_output_path (pathlib.Path)— The new file path for saving the BG Flood model
output with the current timestamp included in the filename.

hydro_dem_path (pathlib.Path,) — The file path of the Hydrologically conditioned
DEM (Hydro DEM) for the specified catchment area.

resolution (Union[int, float])- The grid resolution in meters for metric grids, rep-
resenting the size of each grid cell.

output_timestep (Union[int, float] = @) — Time step between model outputs in
seconds. Default value is 0.0 (no output generated).

end_time (Union[int, float] = @) - Time in seconds when the model stops. Default
value is 0.0 (model initializes but does not run).

mask (Union[int, float] = 9999) — The mask value is used to remove blocks from
computation where the topography elevation (zb) is greater than the specified value. Default
value is 9999.0 (no areas are masked).

gpu_device (int = 0) — Specify the GPU device to be used. Default value is O (the first
available GPU). Set the value to -1 to use the CPU. For other GPUs, use values 2 and above.

small_nc (int = 0) — Specify whether the output should be saved as short integers to
reduce the size of the output file. Set the value to 1 to enable short integer conversion, or set
it to O to save all variables as floats. Default value is 0.

This function does not return any value.

Return type
None

src.flood_model.bg_flood_model.run_bg_flood_model (engine: sqlalchemy.engine.Engine,

catchment_area: geopandas.GeoDataFrame,
model_output_path: pathlib.Path, output_timestep:
int | float = 0, end_time: int | float = 0, resolution:
int | float | None = None, mask: int | float = 9999,
gpu_device: int = 0, small_nc: int = 0) — None

Run the BG-Flood Model for the specified catchment area.

Parameters

1.1.
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engine (Engine) — The engine used to connect to the database.

* catchment_area (gpd.GeoDataFrame) — A GeoDataFrame representing the catchment
area.

* model_output_path (pathlib.Path)— The new file path for saving the BG Flood model
output with the current timestamp included in the filename.

e output_timestep (Union[int, float] = 0) — Time step between model outputs in
seconds. Default value is 0.0 (no output generated).

* end_time (Union[int, float] = 0)- Time in seconds when the model stops. Default
value is 0.0 (model initializes but does not run).

resolution (Optional [Union[int, float]] = None)- The grid resolution in meters
for metric grids, representing the size of each grid cell. If not provided (default is None), the
resolution of the Hydrologically conditioned DEM will be used as the grid resolution.

mask (Union[int, float] = 9999) — The mask value is used to remove blocks from
computation where the topography elevation (zb) is greater than the specified value. Default
value is 9999.0 (no areas are masked).

* gpu_device (int = @) — Specify the GPU device to be used. Default value is O (the first
available GPU). Set the value to -1 to use the CPU. For other GPUs, use values 2 and above.

* small_nc (int = 0) — Specify whether the output should be saved as short integers to
reduce the size of the output file. Set the value to 1 to enable short integer conversion, or set
it to O to save all variables as floats. Default value is 0.

Returns
This function does not return any value.

Return type
None

src.flood_model.bg_flood_model.main(selected_polygon_gdf: geopandas.GeoDataFrame, output_timestep:
int | float = 0, end_time: int | float = 0, resolution: int | float | None =
None, mask: int | float = 9999, gpu_device: int = 0, small_nc: int = 0,
log_level: src.digitaltwin.utils.LoglLevel = LogLevel DEBUG) — int

Generate BG-Flood model output for the requested catchment area, and incorporate the model output to
GeoServer for visualization.

Parameters

* selected_polygon_gdf (gpd.GeoDataFrame) — A GeoDataFrame representing the se-
lected polygon, i.e., the catchment area.

* output_timestep (Union[int, float] = 0) — Time step between model outputs in
seconds. Default value is 0.0 (no output generated).

end_time (Union[int, float] = ®)- Time in seconds when the model stops. Default
value is 0.0 (model initializes but does not run).

resolution (Optional [Union[int, float]] = None)- The grid resolution in meters
for metric grids, representing the size of each grid cell. If not provided (default is None), the
resolution of the Hydrologically conditioned DEM will be used as the grid resolution.

mask (Union[int, float] = 9999) — The mask value is used to remove blocks from
computation where the topography elevation (zb) is greater than the specified value. Default
value is 9999.0 (no areas are masked).

* gpu_device (int = 0) — Specify the GPU device to be used. Default value is O (the first
available GPU). Set the value to -1 to use the CPU. For other GPUs, use values 2 and above.
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* small_nc (int = ) — Specify whether the output should be saved as short integers to
reduce the size of the output file. Set the value to 1 to enable short integer conversion, or set
it to O to save all variables as floats. Default value is 0.

* log_level (LogLevel = LogLevel.DEBUG) — The log level to set for the root logger.
Defaults to LogLevel. DEBUG. The available logging levels and their corresponding numeric
values are: - LogLevel. CRITICAL (50) - LogLeve. ERROR (40) - LogLevel. WARNING
(30) - LogLevel.INFO (20) - LogLevel. DEBUG (10) - LogLeve. NOTSET (0)

Returns
Returns the model id of the new flood_model produced

Return type
int

src.flood_model.bg_flood_model.sample_polygon

src.flood_model. flooded_buildings
Module Contents

Functions

store_flooded_buildings_in_database(engine,
buildings, ...)

find_flooded_buildings(— pandas.DataFrame) Creates a building DataFrame with attribute
"is_flooded",

categorise_buildings_as_flooded(—  geopan- Identifies all buildings in building_polygons that inter-
das.GeoDataFrame) sect with areas in flooded_polygons.
retrieve_building_outlines(— geopan-  Retrieve building outlines for an area of interest from the
das.GeoDataFrame) database
polygonize_flooded_area(— geopan- Takes a flood depth raster and applies depth thresholding
das.GeoDataFrame) on it so that only areas

Attributes
wkt

src.flood_model. flooded_buildings.store_flooded_buildings_in_database (engine:
sqlalchemy.engine.Engine,
buildings:
pandas.DataFrame,
flood_model_id: int)

src.flood_model. flooded_buildings.find_flooded_buildings (area_of interest:
geopandas.GeoDataFrame,
flood_model_output_path: pathlib.Path,
flood_depth_threshold: float) —
pandas.DataFrame
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Creates a building DataFrame with attribute “is_flooded”, depending on if the area for each building is flooded
to a depth greater than or equal to flood_depth_threshold. the index, building_outline_id, matches build-
ing_outline_id from nz_building_outline table/

Parameters

» area_of_interest (gpd. GeoDataFrame) — A GeoDataFrame with a polygon specifying
the area to get buildings for.

» flood_model_output_path (pathlib.Path) — Path to the flood model output file to be
read

» flood_depth_threshold (float) — The minimum depth required to designate a pixel in
the raster as flooded.
Returns
A pd.DataFrame specifying if each building is flooded or not.

Return type
pd.DataFrame

src.flood_model. flooded_buildings.categorise_buildings_as_flooded (building_polygons:
geopandas.GeoDataFrame,

flood_polygons:
geopandas.GeoDataFrame)
— geopandas.GeoDataFrame

Identifies all buildings in building_polygons that intersect with areas in flooded_polygons. :param build-
ing_polygons: A GeoDataFrame with each polygon representing a building outline :type building_polygons:
gpd.GeoDataFrame :param flood_polygons: A GeoDataFrame with each polygon representing a flooded area
:type flood_polygons: gpd.GeoDataFrame
Returns
A copy of building_polygons with an additional boolean attribute “is_flooded”

Return type
gpd.GeoDataFrame

src.flood_model. flooded_buildings.retrieve_building_outlines(area_of interest:

geopandas.GeoDataFrame) —
geopandas.GeoDataFrame

Retrieve building outlines for an area of interest from the database

Parameters
area_of_interest (gpd. GeoDataFrame) — A GeoDataFrame polygon specifying the area of
interest to retrieve buildings in.

Returns
A GeoDataFrame containing all of the building outlines in the area

Return type
gpd.GeoDataFrame

src.flood_model. flooded_buildings.polygonize_flooded_area(flood_raster: xarray.DataArray,
flood_depth_threshold: float) —
geopandas.GeoDataFrame
Takes a flood depth raster and applies depth thresholding on it so that only areas flooded deeper than or equal to
flood_depth_threshold are represented. Returns the data in a collection of polygons

Parameters

104 Chapter 1. API Reference



Flood Resilience Digital Twin (FReDT), Release 0.1.0

» flood_raster (xarray.DataArray) — Raster with each pixel representing flood depth at

the point

» flood_depth_threshold (float) — The minimum depth specified to consider a pixel in

the raster flooded

Returns

A GeoDataFrame containing all of the building outlines in the area

Return type
gpd.GeoDataFrame

src.flood_model. flooded_buildings.wkt = '"POLYGON ((172.68346232258148 -43.39283883172603,

172.68346232258148 -43.37441484114113,..."

src.flood_model.serve_model

Takes generated models and adds them to GeoServer so they can be retrieved by API calls by the frontend or other

clients

Module Contents

Functions

convert_nc_to_gtiff(— pathlib.Path)
upload_gtiff_ to_store(— None)
create_layer_from_store(— None)
get_geoserver_url(— str)
add_gtiff_to_geoserver(— None)

add_model_output_to_geoserver(model_output_pat
model_id)

Creates a GeoTiff file from a netCDF model output. The
Tiff represents the max flood height in the model output.
Uploads a GeoTiff file to a new GeoServer store, to en-
able serving.

Creates a GeoServer Layer from a GeoServer store, mak-
ing it ready to serve.

Retrieves full GeoServer URL from environment vari-
ables.

Uploads a GeoTiff file to GeoServer, ready for serving to
clients.

Adds the model output max depths to GeoServer, ready
for serving.

Attributes

GEOSERVER_REST_URL

log

src.flood_model.serve_model.GEOSERVER_REST_URL = 'http://localhost:8088/geoserver/rest/"’

src.flood_model.serve_model.log
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src.flood_model.serve_model.convert_nc_to_gtiff (nc_file_path: pathlib.Path) — pathlib.Path
Creates a GedTiff file from a netCDF model output. The Tiff represents the max flood height in the model output.

Parameters
nc_file_path (pathlib.Patj) — The file path to the netCDF file.

Returns
The filepath of the new GeoTiff file.

Return type
pathlib.Path

src.flood_model.serve_model.upload_gtiff_to_store(geoserver_url: str, gtiff filepath: pathlib.Path,
store_name: str, workspace_name: str) — None

Uploads a GeoTiff file to a new GeoServer store, to enable serving.
Parameters
» geoserver_url (str)— The URL to the geoserver instance.
o gtiff filepath (pathlib.Path)— The filepath to the GeoTiff file to be served.
e store_name (str)— The name of the new Geoserver store to be created.

» workspace_name (str) — The name of the existing GeoServer workspace that the store is
to be added to.

Returns
This function does not return anything

Return type
None

src.flood_model.serve_model.create_layer_from_store(geoserver_url: str,layer_name: str, native_crs:
str, workspace_name: str) — None

Creates a GeoServer Layer from a GeoServer store, making it ready to serve.
Parameters
» geoserver_url (str)— The URL to the geoserver instance.
* layer_name (str) — Defines the name of the layer in GeoServer.
* native_crs (str)— The WKT form of the CRS of the data being shown in the layer.

» workspace_name (str)— The name of the existing GeoServer workspace that the store is
to be added to.

Returns
This function does not return anything

Return type
None

src.flood_model.serve_model.get_geoserver_url() — str
Retrieves full GeoServer URL from environment variables.

Returns
The full GeoServer URL

Return type
Str
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src.flood_model.serve_model.add_gtiff_to_geoserver (gtiff filepath: pathlib.Path, workspace_name: str,
model_id: int) — None

Uploads a GeoTiff file to GeoServer, ready for serving to clients.
Parameters
o gtiff filepath (pathlib.Path) - The filepath to the GeoTiff file to be served.

» workspace_name (str) — The name of the existing GeoServer workspace that the store is
to be added to.

» model_id (int) — The id of the model being added, to facilitate layer naming.

Returns
This function does not return anything

Return type
None

src.flood_model.serve_model.add_model_output_to_geoserver (model_output_path: pathlib.Path,
model_id: int)

Adds the model output max depths to GeoServer, ready for serving. The GeoServer layer name will be
f’Output_{model_id}” and the workspace name will be “dt-model-outputs”

Parameters
» model_output_path (pathlib.Path) — The file path to the model output to serve.

* model_id (int) — The database id of the model output.

Returns
This function does not return anything

Return type
None

1.1.2 Submodules

1.1.2.1 src.app

The main web application that serves the Digital Twin to the web through a Rest API.

Module Contents
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Functions

check_celery_alive(— Callable[Ellipsis, Function decorator to check if the Celery workers are

flask.Response]) running and return INTERNAL_SERVER_ERROR if
they are down.

health_check(— flask.Response) Ping this endpoint to check that the server is up and run-
ning

get_status(— flask.Response) Retrieves status of a particular Celery backend task.

remove_task(— flask.Response) Deletes and stops a particular Celery backend task.

generate_model(— flask.Response) Generates a flood model for a given area.

create_wkt_from_coords(— str) Takes two points and creates a wkt bbox string from them

get_depth_at_point(— flask.Response) Finds the depths and times at a particular point for a

given completed model output task.
get_distinct_column_values(— flask.Response)

valid_coordinates(— bool) Validates coordinates are in the valid range of WGS84

Attributes

app

gunicorn_logger

sSrc.app.app

src.app.check_celery_alive(f: Callable[Ellipsis, flask.Response]) — Callable[Ellipsis, flask.Response]

Function decorator to check if the Celery workers are running and return INTERNAL_SERVER_ERROR if they
are down.

Parameters
f(Callable[..., Response])— The view function that is being decorated

Returns
INTERNAL_SERVER_ERROR if the celery workers are down, otherwise continue to function
f

Return type
Response

src.app.health_check() — flask.Response
Ping this endpoint to check that the server is up and running Supported methods: GET

Returns
The HTTP Response. Expect OK if health check is successful

Return type
Response

src.app.get_status(task_id) — flask.Response
Retrieves status of a particular Celery backend task. Supported methods: GET
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Parameters
task_id (str) — The id of the Celery task to retrieve status from

Returns
JSON response containing taskStatus

Return type
Response

src.app.remove_task(task_id) — flask.Response
Deletes and stops a particular Celery backend task. Supported methods: DELETE

Parameters
task_id (str) — The id of the Celery task to remove

Returns
ACCEPTED is the expected response

Return type
Response

src.app.generate_model () — flask.Response

Generates a flood model for a given area. Supported methods: POST POST values: {“bbox™: {*“latl”: number,
“lat2”: number, “Ing1”: number, “Ing2”: number} }

Returns
ACCEPTED is the expected response. Response body contains Celery taskld

Return type
Response

src.app.create_wkt_from_coords (latl: float, Ingl: float, lat2: float, Ing2: float) — str

Takes two points and creates a wkt bbox string from them
Parameters
e latl (float) - latitude of first point
* Ingl (float) — longitude of first point
* lat2 (float) — latitude of second point
* Ing2 (float) - longitude of second point

Returns
bbox in wkt form generated from the two coordinates

Return type
str

src.app.get_depth_at_point (task_id: str) — flask.Response
Finds the depths and times at a particular point for a given completed model output task. Supported methods:
GET Required query param values: “lat”: float, “Ing”: float

Parameters
task_id (str) — The id of the completed task for generating a flood model.

Returns
Returns JSON response in the form {“depth”: Arrau<number>, “time”: Array<number>} rep-
resenting the values for the given point.

Return type
Response
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src.app.get_distinct_column_values(table_name: str) — flask.Response
src.app.valid_coordinates (latitude: float, longitude: float) — bool
Validates coordinates are in the valid range of WGS84 (-90 < latitude <= 90) and (-180 < longitude <= 180)
Parameters
* latitude (float) — The latitude part of the coordinate
* longitude (float) — The longitude part of the coordinate

Returns
True if both latitude and longitude are within their valid ranges.

Return type
bool

src.app.gunicorn_logger

1.1.2.2 src.config

Module Contents

Functions
get_env_variable(— T) Reads an environment variable, with settings to allow
defaults, empty values, and type casting
_cast_str(—T) Takes a string and casts it to necessary primitive builtin
types. Tested with int, float, and bool.
Attributes
T

src.config.T

src.config.get_env_variable (var_name: str, default: T = None, allow_empty: bool = False, cast_to: type =
str) > T

Reads an environment variable, with settings to allow defaults, empty values, and type casting To read a boolean
EXAMPLE_ENV_VAR=False use get_env_variable(“"EXAMPLE_ENV_VAR”, cast_to=bool)

Parameters
e var_name (str)— The name of the environment variable to retrieve.

e default (T = None) — Default return value if the environment variable does not exist.
Doesn’t override empty string vars.

* allow_empty (bool) — If False then a KeyError will be raised if the environment variable
is empty.

* cast_to (Callable[[str], TJ])- The type to castto e.g. str, int, or bool
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Return type
The environment variable, or default if it does not exist, as type T.

Raises
» KeyError - If allow_empty is False and the environment variable is empty string or None
» ValueError - If cast_to is not compatible with the value stored.

src.config._cast_str(str_to_cast: str,cast to: T) — T

Takes a string and casts it to necessary primitive builtin types. Tested with int, float, and bool. For bools, this
detects if the value is in the case-insensitive sets { “True”, “T”, “1”’} or {“False”, “F”, “0”} and raises a ValueError
if not. For example _cast_str(‘“False”, bool) -> False

Parameters
* str_to_cast (str) — The string that is going to be casted to the type
* cast_to (Callable[[str], TJ])- The type to castto e.g. bool

Return type
The string casted to type T defined by cast_to.

Raises
ValueError if [cast_to] is not compatible with the value stored. —

1.1.2.3 src.datacube_data
1.1.2.4 src.run_all

This script runs each module in the Digital Twin using a Sample Polygon.

Module Contents

Functions
main(— None) Runs each module in the Digital Twin using the selected
polygon and the defined parameters for each module's
Attributes

DEFAULT_MODULES_TO_PARAMETERS

sample_polygon

src.run_all.main(selected_polygon_gdf: geopandas.GeoDataFrame, modules_to_parameters:
Dict[types.ModuleType, Dict[str, str | int | float | bool | None | enum.Enum]]) — None

Runs each module in the Digital Twin using the selected polygon and the defined parameters for each module’s
main function.

Parameters
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» selected_polygon_gdf (gpd.GeoDataFrame) — A GeoDataFrame representing the se-
lected polygon, i.e., the catchment area.

e modules_to_parameters (Dict[ModuleType, Dict[str, Union[str, int,
float, bool, None, Enum]]]) — A dictionary that associates each module with the
parameters necessary for its main function, including the option to set the log level for each
module’s root logger. The available logging levels and their corresponding numeric values
are: - LogLevel. CRITICAL (50) - LogLevel. ERROR (40) - LogLevel. WARNING (30) -
LogLevel.INFO (20) - LogLevel. DEBUG (10) - LogLevel. NOTSET (0)

Returns
This function does not return any value.

Return type
None

src.run_all.DEFAULT_MODULES_TO_PARAMETERS

src.run_all.sample_polygon

1.1.2.5 src.tasks

Runs backend tasks using Celery. Allowing for multiple long-running tasks to complete in the background. Allows the
frontend to send tasks and retrieve status later.

Module Contents

Classes

OnFailureStateTask Task that switches state to FAILURE if an exception oc-
curs
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Functions

create_model_for_area(— cel-

ery.result. GroupResult)

add_base_data_to_db(— None)
process_dem(selected_polygon_wkt)
generate_rainfall_inputs(selected_polygon_wkt)
generate_tide_inputs(selected_polygon_wkt, ...)
generate_river_inputs(selected_polygon_wkt)
run_flood_model(— int)

wkt_to_gdf(— geopandas.GeoDataFrame)

get_depth_by_time_at_point(— Tuple[List[float],
)

get_distinct_column_values(— dict)

Creates a model for the area using series of chained (se-
quential) and grouped (parallel) sub-tasks.

Task to ensure static base data for the given area is added
to the database

Task to ensure hydrologically-conditioned DEM is pro-
cessed for the given area and added to the database.
Task to ensure rainfall input data for the given area is
added to the database and model input files are created.
Task to ensure tide input data for the given area is added
to the database and model input files are created.

Task to ensure river input data for the given area is added
to the database and model input files are created.

Task to run flood model using input data from previous
tasks.

Transforms a WKT string polygon into a GeoDataFrame
Task to query a point in a flood model output and return
the list of depths and times.

Attributes

message_broker_url
app
log

X

src.tasks.message_broker_url

src.tasks.app

src.tasks.log

class src.tasks.OnFailureStateTask

Bases: app

Task that switches state to FAILURE if an exception occurs

on_failure(_exc, _task_id, _args, _kwargs, _einfo)

src.tasks.create_model_for_area(selected_polygon_wkt: str, scenario_options: dict) —
celery.result.GroupResult

Creates a model for the area using series of chained (sequential) and grouped (parallel) sub-tasks.

1.1. src
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Parameters
selected_polygon_wkt (str)— The polygon defining the selected area to run the model for.
Defined in WKT form.

Returns
The task result for the long-running group of tasks. The task ID represents the final task in the
group.

Return type
result.GroupResult

src.tasks.add_base_data_to_db(selected_polygon_wkt: str) — None
Task to ensure static base data for the given area is added to the database
Parameters

selected_polygon_wkt (str) — The polygon defining the selected area to add base data for.
Defined in WKT form.

Returns
This task does not return anything

Return type
None
src.tasks.process_dem(selected_polygon_wkt: str)
Task to ensure hydrologically-conditioned DEM is processed for the given area and added to the database.
Parameters

selected_polygon_wkt (str) — The polygon defining the selected area to process the DEM
for. Defined in WKT form.

Returns
This task does not return anything

Return type
None
src.tasks.generate_rainfall_inputs(selected_polygon_wkt: str)
Task to ensure rainfall input data for the given area is added to the database and model input files are created.
Parameters

selected_polygon_wkt (str)— The polygon defining the selected area to add rainfall data for.
Defined in WKT form.

Returns
This task does not return anything

Return type
None
src.tasks.generate_tide_inputs(selected_polygon_wkt: str, scenario_options: dict)
Task to ensure tide input data for the given area is added to the database and model input files are created.
Parameters

selected_polygon_wkt (str) — The polygon defining the selected area to add tide data for.
Defined in WKT form.

Returns
This task does not return anything

Return type
None
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src.tasks.generate_river_inputs (selected_polygon_wkt: str)

Task to ensure river input data for the given area is added to the database and model input files are created.

Parameters
selected_polygon_wkt (str)— The polygon defining the selected area to add river data for.
Defined in WKT form.

Returns
This task does not return anything

Return type
None

src.tasks.run_flood_model (selected_polygon_wkt: str) — int
Task to run flood model using input data from previous tasks.

Parameters
selected_polygon_wkt (str)— The polygon defining the selected area to run the flood model
for. Defined in WKT form.

Returns
The database ID of the flood model that has been run.

Return type
int
src.tasks.wkt_to_gdf (wkt: str) — geopandas.GeoDataFrame

Transforms a WKT string polygon into a GeoDataFrame

Parameters
wkt (str) — The WKT form of the polygon to be transformed. In WGS84 CRS (epsg:4326).

Returns
The GeoDataFrame form of the polygon after being transformed.

Return type
gpd.GeoDataFrame

src.tasks.get_depth_by_time_at_point (model_id: int, lat: float, Ing: float) — Tuple[List[float], List[float]]
Task to query a point in a flood model output and return the list of depths and times.

Parameters
» model_id (int) — The database id of the model output to query.
e lat (float) — The latitude of the point to query.
* Ing (float) — The longitude of the point to query.

Returns
Tuple of depths list and times list for the pixel in the output nearest to the point.

Return type
Tuple[List[float], List[float]]

src.tasks.get_distinct_column_values(table_name: str) — dict

src.tasks.x
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1.1.3 Package Contents

src.__version__ = '0.1.0'
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Sy mbols src.dynamic_boundary_conditions.river.river_network_for_aoi),
__table_args__ (src.digitaltwin.tables.RiverNetworkExclusions 64
attribute), 16 add_nodes_to_network() (in module
__tablename__ (sre.digitaltwin.tables.BGFloodModelOutput src.dynamic_boundary_conditions.river.river_network_for_aoi),
attribute), 17, 18 65 _
__tablename__ (sre.digitaltwin.tables.BuildingFloodStaru@dd-nodes_to_recl1 () (in module
attribute), 18 src.dynamic_boundary_conditions.river.river_network_for_aoi),

__tablename__ (src.digitaltwin.tables.GeospatialLayers 64
attribute), 13, 14 add_rainfall_data_to_db() (in module

__tablename__ (src.digitaltwin.tables.RiverNetworkExclusions src.dynamic_boundary_conditions.rainfall. hirds_rainfall_data_tc

attribute), 15, 16 26

__tablename__ (sre.digitaltwin.tables.RiverNetworkOutpupdd-slr_to_tide O (in module
attribute), 16, 17 src.dynamic_boundary_conditions.tide.tide_slr_combine),
__tablename__ (src.digitaltwin.tables.UserLogInfo at- 95
tribute), 15 add_time_information() (in module
__version__ (in module src), 116 src.dynamic_boundary_conditions.rainfall.hyetograph),
_cast_str() (in module src.config), 111 30
add_time_information() (in module
A src.dynamic_boundary_conditions.tide.tide_data_from_niwa),
add_absent_edges_to_network() (in module . 86 . .
. .. . . a117? recl_with_osm(Q) (in module
src.dynamic_boundary_conditions.river.river_networ _?Br_aoz)', . .. . .
66 srcidynamic_boundary_conditions.river.align_recl_osm),
50

add_base_data_to_db() (in module src.tasks), 114
add_crs_to_latest_model_output() (in module
src.flood_model.bg_flood_model), 100
add_each_site_rainfall_data() (in module a in module src.tasks), 113

src.dynamic_boundary_conditions. rainfall.hirds_;ﬁg ﬁ gﬁ(fﬂ to_jbg, T

26 pproachType (class

add_edge_directions_to_network_data() (in mod- 9
ule src.dynamic_boundary_conditions.river.river_network, Jgr_aoi),
67

add_gtiff to_geoserver() (in module
sre.flood_model.serve_model), 106

ALT_BLOCK (src.dynamic_boundary_conditions.rainfall.rainfall_enum.Hyet
attribute), 37
app (in module src.app), 108

in
src.dynamic_boundary_conditions.tide.tide_enum),

Base (in module src.digitaltwin.setup_environment), 12

add_initial_edges_to_network() (n  module Base (in module src.digitaltwin.tables), 13

src.dynamic_boundary_conditions.river. river_net%gr SR n&géd)z’de sre.fl ood_mode-l. bg_fi olod-_moafel), 98
BGFIbodModelOutput (class in src.digitaltwin.tables),

66
add_model_output_to_geoserver() (in module 17 .
BlockStructure (class in
sre.flood_model.serve_model), 107 d o bound diti nfall.rainfall d hi
add_network_exclusions_to_db()  (in  module ;gc 'ynamic_boundary_conditions.rainfall.rainfall_data_from_hi
.d ic_bound ditions.river.ri twork_to_from_db),
it)c YRAMIC_DOUNGATY _CONAITONS. TIver.rver_ne BgﬁrT(iO ggn(lc"lasg in src.dynamic_boundary_conditions.river.river_enunt),
59

add_nodes_intersection_type() (in module
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build_recl_river_network() (in module created_at (src.digitaltwin.tables.UserLoglnfo  at-
src.dynamic_boundary_conditions.river.river_network_for_twibyte), 15
68 CRITICAL (src.digitaltwin.utils.LogLevel attribute), 20
building_outline_id
(src.digitaltwin.tables. Building FloodStatus D
attribute), 18 data_provider (src.digitaltwin.tables.GeospatialLayers
BuildingFloodStatus (class in src.digitaltwin.tables), attribute), 14
18 DatumType (class in src.dynamic_boundary_conditions.tide.tide_enum),
88
C db_rain_table_name() (in module
categorise_buildings_as_flooded() (in module src.dynamic_boundary_conditions.rainfall. hirds_rainfall_data_tc
src.flood_model.flooded_buildings), 104 25

categorize_exploded_multi_intersect() (inmod- DEBUG (src.digitaltwin.utils.LogLevel attribute), 20
ule src.dynamic_boundary_conditions.river.align_peEAUISTMODULES_TO_PARAMETERS (in module

48 src.run_all), 112
category (src.dynamic_boundary_conditions.rainfall. rainfelé réaiei fomulitds. Bladsdgaeturgn flow_index() (in

attribute), 36 module src.dynamic_boundary_conditions.river.align_recl_osm),
check_celery_alive() (in module src.app), 108 47
check_table_exists() (in module

src.digitaltwin.tables), 18
CHICAGO (src.dynamic_boundary_conditions.rainfall. rainfalpeerredfyetoMethoth. utils. LogLevel attribute), 20

attribute), 37 exclusion_cause (src.digitaltwin.tables.RiverNetworkExclusions
clean_fetched_vector_data() (in module attribute), 16
src.digitaltwin. get_data_using_geoapis), execute_query () (in module src.digitaltwin.tables), 19
7 ) . extract_valid_ari_values() (in module
clean_recl_inflow_data() (in module src.dynamic_boundary_conditions.river.hydrograph),
src.dynamic_boundary_conditions.river.hydrograph), 32
51
configure_osm_cache() (in module F
src.dynamic_boundary_conditions.river. osm_watefgzgézﬁ)_,o sm_waterways () (in module
56 src.dynamic_boundary_conditions.river.osm_waterways),
convert_nc_to_gtiff() (in module 56
src.flood_model.serve_model), 105 fetch_tide_data() (in module
convert_to_nz_timezone() (in module src.dynamic_boundary_conditions.tide.tide_data_from_niwa),
src.dynamic_boundary_conditions.tide.tide_data_from_niwg),
82 ) fetch_tide_data_around_highest_tide() (in mod-
convert_to_tabular_data(Q (in module ule src.dynamic_boundary_conditions.tide.tide_data_from_niwa)
src.dynamic_boundary_conditions.rainfall.rainfall_data_frogs_hirds),
36 o ) ) fetch_tide_data_for_requested_period() (in
coverage_area (src.digitaltwin.tables.GeospatialLayers module src.dynamic_boundary_conditions.tide.tide_data_from_n.
attribute), 14 Y
create_layer_from_store() (in module  fetch_tide_data_from_niwa() (in module
sre.flood_model.serve_model), 106 src.dynamic_boundary_conditions.tide.tide_data_from_niwa),
create_model_for_area() (in module src.tasks), 113 33
create_rain_data_cube() (in module fetch_vector_data_using_geoapis() (in module
src.dynamic_boundary_conditions.rainfall. rainfall_model_igzp&g)[gl-mlmm. get_data_using_geoapis), 7
40 file_name (src.digitaltwin.tables. BGFloodModelOutput
create_table() (in module src.digitaltwin.tables), 18 attribute), 17, 18
create_wkt_from_coords() (in module src.app), 109 £i1e_path (sre.digitaltwin.tables.BGFloodModelOutput
created_at (src.digitaltwin.tables. BGFloodModelOutput attribute), 17, 18
attribute), 17, 18 . filter_for_duration() (in module
created_at (src.digitaltwin.tables.RiverNetworkOutput sre.dynamic_boundary_conditions.rainfall. hirds_rainfall_data_fr
attribute), 17 o)
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find_flooded_buildings() (in module get_connection_from_profile() (in module
src.flood_model.flooded_buildings), 103 src.digitaltwin.setup_environment), 12
flood_model_id (src.digitaltwin.tables.Building FloodStatget_data_from_hirds() (in module
attribute), 18 src.dynamic_boundary_conditions.rainfall.rainfall_data_from_hi
35
G get_database() (in module
gen_api_query_param_list() (in module src.digitaltwin.setup_environment), 12
sre.dynamic_boundary_conditions.tide.tide_data_9RmIak&nranges O (in module
80 src.dynamic_boundary_conditions.tide.tide_data_from_niwa),
generate_model ) (in module src.app), 109 80 ) .
generate_rain_model_input() (in module 9et_depth_at_point() (in module src.app), 109
src.dynamic_boundary_conditions.rainfall. rainfal@9%e8EP Ry time_at_point (in module
41 src.tasks), 115
generate_rainfall_inputs() (in module src.tasks), 9et_distinct_column_values() (in module src.app),
114 109
generate_river_inputs() (in module src.tasks), 114 ~ 9et_distinct_column_values() (in module
generate_river_model_input() (in module src..tasks), 115 _
src.dynamic_boundary_conditions.river.river_mo&@&8tihgyations_near_recl_entry_point() (in
62 module src.dynamic_boundary_conditions.river.river_inflows),
generate_tide_inputs() (in module src.tasks), 114 _60 .
generate_uniform_boundary_input() (in module 9et-engineQ) (in module
src.dynamic_boundary_conditions.tide.tide_slr_model_inpu$S- digitaltwin.setup_environment), 12
97 get_env_variable() (in module src.config), 110
geometry (src.digitaltwin.tables. BGFloodModelOutpur 9€t_existing_geospatial_layers() (in module
attribute), 18 src.digitaltwin.instructions_records_to_db), 9
geometry (src.digitaltwin.tables.RiverNetworkExclusions 9€t—_existing network() (in module
attribute), 16 src.dynamic_boundary_conditions.river.river_network_to_from_c
geometry (src.digitaltwin.tables.RiverNetworkOutput at- 73
tribute), 17 get_existing_network_metadata_from_db() (in
geometry (src.digitaltwin.tables.UserLoglnfo attribute), module src.dynamic_boundary_conditions.river.river_network_to
15 73
GEOMETRY_NAMES (src.digitaltwin.get_data_using_geoapis. ¥E-exploded multi_intersect()  (in  module
attribute), 7 src.dynamic_boundary_conditions.river.align_recl_osm),
GEOSERVER_REST_URL (in module 47
src.flood_model.serve_model), 105 get_geoserver_url() (in module
Geospatiallayers (class in src.digitaltwin.tables), 13 SrC-ﬂ_OOd_mOddSCir ve_model), 106
get_catchment_area() (in module 9et_geospatial_layer_info(Q) (in module
sre.digitaltwin.utils), 21 sre.digitaltwin.data_to_db), 3
get_catchment_boundary_centroids() (in module 9et_highest_tide_date_span() (in module
sre.dynamic_boundary_conditions.tide.tide_query_locationyrc-dynamic_boundary_conditions.tide.tide_data_from_niwa),
91
get_catchment_boundary_info() (in  module 9et_highest_tide_datetime() (in module
sre.dynamic_boundary_conditions.tide.tide_query_locationyrc-dynamic_boundary_conditions.tide.tide_data_from_niwa),
90

get_catchment_boundary_lines() (in  module 9et_highest_tide_datetime_span() (in module
sre.dynamic_boundary_conditions.tide.tide_query_locationyrc-dynamic_boundary_conditions.tide.tide_data_from_niwa),

91

get_closest_slr_data() (in module 9et_hydro_dem_boundary_lines() (in  module
src.dynamic_boundary_conditions.tide.sea_level_rise_data)T¢- dynamic_boundary_conditions.river.main_river),
77 54

get_combined_tide_slr_data() (in module 9et_hydrograph_data() (in module
src.dynamic_boundary_conditions.tide.tide_slr_combine), STC. dynamic_boundary_conditions.river.hydrograph),
95 53

get_hyetograph_data() (in module
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src.dynamic_boundary_conditions.rainfall. hyetograph), 22

31 get_or_load_tide_data_for_demo() (in module
get_interp_incremental_data() (in module src.dynamic_boundary_conditions.tide.main_tide_slr),
src.dynamic_boundary_conditions.rainfall.hyetograph), 75
29 get_osm_waterways_data() (in module
get_interpolated_data() (in module src.dynamic_boundary_conditions.river.osm_waterways),
src.dynamic_boundary_conditions.rainfall. hyetograph), 57
28 get_osm_waterways_on_bbox() (in module
get_interpolated_slr_scenario_data() (in mod- src.dynamic_boundary_conditions.river.align_recl_osm),
ule src.dynamic_boundary_conditions.tide.tide_slr_combiné)9
94 get_query_loc_coords_position() (in module
get_layout_structure_of_data() (in  module src.dynamic_boundary_conditions.tide.tide_data_from_niwa),
src.dynamic_boundary_conditions.rainfall.rainfall_data_froif_hirds),
36 get_rainfall_sites_data() (in module
get_min_elevation_river_input_point () (in mod- src.dynamic_boundary_conditions.rainfall. rainfall_sites),
ule src.dynamic_boundary_conditions.river.river_inflows), 42
61 get_rainfall_sites_in_df(Q) (in module
get_model_output_metadata() (in module src.dynamic_boundary_conditions.rainfall.rainfall_sites),
src.flood_model.bg_flood_model), 99 42
get_multi_intersect_inflows() (in module get_recl_data_with_sdc_from_db() (in module
src.dynamic_boundary_conditions.river.align_recl_osm), src.dynamic_boundary_conditions.river.river_data_to_from_db),
48 58
get_network_output_metadata() (in module get_recl_inflow_scenario_data() (in module
src.dynamic_boundary_conditions.river.river_network_to_fiomdghymic_boundary_conditions.river.hydrograph),
71 52
get_new_model_output_path() (in module get_recl_inflows_aligned_to_osm() (in module
src.flood_model.bg_flood_model), 99 src.dynamic_boundary_conditions.river.align_recl_osm),
get_new_network_output_paths() (in  module 50
src.dynamic_boundary_conditions.river.river_nengek_recfroinfibows_on_bbox () (in module
71 src.dynamic_boundary_conditions.river.align_rec1_osm),
get_next_network_id() (in module 49
src.dynamic_boundary_conditions.river.river_nengetk_recfroimflbows_with_input_points() (in mod-
70 ule src.dynamic_boundary_conditions.river.river_inflows),
get_niwa_recl_data(Q) (in module 61
src.dynamic_boundary_conditions.river.river_datgeto_fiewl_detwork_data_on_bbox() (in  module
58 src.dynamic_boundary_conditions.river.align_rec1_osm),
get_non_existing_records() (in module 46
src.digitaltwin.instructions_records_to_db), 10 get_recl_river_network() (in module
get_non_intersection_area_from_db() (in module src.dynamic_boundary_conditions.river.river_network_for_aoi),
src.digitaltwin.data_to_db), 4 69
get_non_intersection_centroid_position() (in get_regional_council_clipped_from_db() (in
module src.dynamic_boundary_conditions.tide.tide_query_lmeadideyyc.dynamic_boundary_conditions.tide.tide_query_locati
91 90
get_non_nz_geospatial_layers() (in  module get_sdc_data_from_db() (in module
src.digitaltwin.data_to_db), 2 src.dynamic_boundary_conditions.river.river_data_to_from_db),
get_nz_boundary() (in module src.digitaltwin.utils), 58
21 get_single_intersect_inflows() (in  module
get_nz_coastline_from_db() (in module src.dynamic_boundary_conditions.river.align_recl_osm),
src.dynamic_boundary_conditions.tide.tide_query_location}]
90 get_site_url_key() (in module
get_nz_geospatial_layers() (in module src.dynamic_boundary_conditions.rainfall.rainfall_data_from_hi
src.digitaltwin.data_to_db), 2 35
get_one_site_rainfall_data() (in module get_sites_id_in_catchment() (in module

src.dynamic_boundary_conditions.rainfall. hirds_rainfall_date.dyovandb) boundary_conditions.rainfall. hirds_rainfall_data_tc
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25 37
get_sites_id_not_in_db() (in module

src.dynamic_boundary_conditions.rainfall.hi rds_rlainfall_data_to_db),

26 identify_absent_edges_to_add() (in  module
get_sites_within_aoi() (in module src.dynamic_boundary_conditions.river.river_network_for_aoi),

src.dynamic_boundary_conditions.rainfall.thiessen_polygortso,

43 INFO (src.digitaltwin.utils.LogLevel attribute), 20
get_slr_data_from_db() (in module is_flooded (src.digitaltwin.tables.BuildingFloodStatus

src.dynamic_boundary_conditions.tide.sea_level_rise_datayttribute), 18

77

get_slr_data_from_nz_searise() (in  module K
src.dynamic_boundary_conditions.tide.sea_level_KisgGdatnE (src. dynamic_boundary_conditions.tide.tide_enum.ApproachT

77 attribute), 89
get_slr_scenario_data() (in module

src.dynamic_boundary_conditions.tide. tide_slr_czhnbine),

93

] LAT (src.dynamic_boundary_conditions.tide.tide_enum.DatumType
get_status() (in module src.app), 108 attribute), 88, 89

get_storm_length'_increment_dat.a'() (in‘ module layer_id (sre.digitaltwin.tables.Geospatial Layers
src.dynamic_boundary_conditions.rainfall. hyetograph), attribute), 14

29 log (in module src.digitaltwin.data_to_db), 2

get_tide_data() ) (in o ) module log (in module src.digitaltwin.instructions_records_to_db),
src.dynamic_boundary_conditions.tide.tide_data _from_mw%),
. 87 . . log (in module src.digitaltwin.setup_environment), 12
get_tide_query_locations() (in module

log (in module src.digitaltwin.utils), 20

sre.dynamic_boundary_conditions.tide. tt’de_query}é%cgﬁ %l(;dule src.dynamic_boundary_conditions.rainfall. hirds_rainfall_dc

92
. . . 25
get_tlme_mlns_tq_add O (l.n. ) module log (in module src.dynamic_boundary_conditions.rainfall.rainfall_model_i
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28 43
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non_nz_geospatial_layers_data_to_db() (inmod- recl_network_id (src.digitaltwin.tables.RiverNetworkExclusions

ule src.digitaltwin.data_to_db), 5 attribute), 15, 16
NoNonIntersectionError, 2 recl_network_id (src.digitaltwin.tables.RiverNetworkOutput
NoTideDataException, 89 attribute), 16, 17
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module src.digitaltwin.data_to_db), 4 sample_polygon (in module src.digitaltwin.run), 11
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source_table_list (src.digitaltwin.tables.UserLogInfo module, 42
attribute), 15 src.dynamic_boundary_conditions
spatial_uniform_rain_input() (in module module, 43

src.dynamic_boundary_conditions.rainfall. rainfalbyeodgmémmia) boundary_conditions.river
40 module, 46
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store_flooded_buildings_in_database() (inmod- unique_id (src.digitaltwin.tables.UserLoginfo  at-

ule src.flood_model.flooded_buildings), 103 tribute), 15
store_geospatial_layers_data_to_db() (in mod- upload_gtiff to_store() (in module
ule src.digitaltwin.data_to_db), 6 sre.flood_model.serve_model), 106
store_instructions_records_to_db() (in module UPPER (src.dynamic_boundary_conditions.river.river_enum.BoundType
src.digitaltwin.instructions_records_to_db), 10 attribute), 60
store_model_output_metadata_to_db() (in module url (src.digitaltwin.tables.GeospatialLayers attribute),
src.flood_model.bg_flood_model), 99 14
store_recl_data_to_db(Q) (in module user_log_info_to_db() (in module
src.dynamic_boundary_conditions.river.river_data_to_fromsubdjgitaltwin.data_to_db), 6
58 UserLogInfo (class in src.digitaltwin.tables), 15
store_recl_network_to_db() (in module
src.dynamic_boundary_conditions.river. river_net\Mrk_to _from_db),
72 valid_coordinates() (in module src.app), 110
store_slr_data_to_db() (in module yalidate_instruction_fields()  (in  module
src.dynamic_boundary_conditions.tide.sea_level_rise_data)y. digitaltwin.instructions_records_to_db), 9
71 validate_url_reachability() (in module
T src.digitaltwin.instructions_records_to_db), 8
VARYING (src.dynamic_boundary_conditions.rainfall. rainfall_enum.Rainln
T (in module src.config), 110 attribute), 37, 38

table_name (src.digitaltwin.tables.GeospatialLayers at-
tribute), 14

thiessen_polygon.s_calculator(). ) (in ) modu.le WARNING (src.digitaltwin.utils.LogLevel attribute), 20
src.dynamic_boundary_conditions.rainfall. thlesseak;zo(liyg%&)u le sre.flood_model flooded_buildings), 105

.ow wkt_to_gd£Q) (in module src.tasks), 115
thiessen_polygons_from_db() (in module
src.dynamic_boundary_conditions.rainfall.thiesse)X polygons),
45 :
thiessen_polygons_to_db() (in module * (in module src.tasks), 115
src.dynamic_boundary_conditions.rainfall.thiessen_polygons),
44
TIDE_API_URL_DATA (in module
src.dynamic_boundary_conditions.tide.tide_data_from_niwa),
79
TIDE_API_URL_DATA_CSV (in module
src.dynamic_boundary_conditions.tide.tide_data_from_niwa),
79

time_period (src.dynamic_boundary_conditions.rainfall.rainfall_data_from_hirds.BlockStructure
attribute), 36

transform_data_for_selected_method() (in mod-
ule src.dynamic_boundary_conditions.rainfall. hyetograph),
30

U

UNIFORM (src.dynamic_boundary_conditions.rainfall. rainfall_enum.RainlnputType
attribute), 37, 38
unique_column_name (src.digitaltwin.tables. GeospatialLayers
attribute), 14
unique_id (src.digitaltwin.tables. BGFloodModel Output
attribute), 17, 18
unique_id (src.digitaltwin.tables.BuildingFloodStatus
attribute), 18
unique_id (src.digitaltwin.tables.GeospatialLayers at-
tribute), 14
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