
   
 

   
 

1 INTRODUCTION 

1.1 Code compliance checking 
The construction sector is the fifth largest employer 
in the EU (Eurostat 2017) and the fourth largest in 
New Zealand (NZ) (Ministry of Business, Innova-
tion and Employment 2021). The number of residen-
tial building consents processed in NZ has increased 
significantly from 14,000 in 2011 to 50,000 in April 
2022 (Hurren 2019, Statistics New Zealand 2022). 
This demands high efficiency in consent processing 
while maintaining high compliance checking quali-
ty. The risk of errors in compliance checking could 
severely affect life safety and the environment.  

While there was extensive research into automat-
ing the compliance checking (ACC) process (East-
man et al. 2009, Preidel & Borrmann 2018, Beach et 
al. 2020, Amor & Dimyadi 2021), there are still 
many unresolved problems, including interpreting 
building regulations (Zhang & El-Gohary 2020, 
Fuchs & Amor 2021), extracting and deriving build-
ing design information (Li et al. 2021, Wu et al. 
2021), aligning the information streams (Zhang & 
El-Gohary 2021), and comprehensive reasoning over 
the multitude of relevant normative documents (Wu 
& Zhang 2022).  

1.2 Building code representation 
The quest for traceable, consistent, and quality as-
sured ACC favours a computer-readable representa-

tion of the building regulations over a non-
transparent hard-coded rule-base. A recurring ques-
tion is how to represent the main business logic. For 
example, the digital representation of the building 
regulations could be close to the original legal text, 
or one could introduce logic, abstraction, and do-
main knowledge into the encoding process. Li et al. 
(2021) used LegalRuleML (LRML) as an open rule 
representation that allows one to keep the translation 
close to the natural language statement while shift-
ing the heavy logic toward the building fact genera-
tion and building information enhancement. While a 
literal translation would facilitate machine learning 
(ML) for automation purposes, the LRML format 
gives little definite restrictions on the encoding. So, 
the encoding guidelines decide on the structure and 
semantics of the LRML rules (Wyner & Governatori 
2013). 

1.3 Manual regulation formalisation 
There were numerous regulation formalisation ap-
proaches for ACC. For example, RASE (Hjelseth & 
Nisbet 2011) is an approach to annotating and trans-
lating regulation clauses. A similar top-down strate-
gy was followed by Nazarenko et al. (2016). Bhui-
yan et al. (2019) used a bottom-up approach to 
encode traffic regulations into defeasible deontic 
logic. Similarly, Dimyadi et al. (2020) translated 15 
of NZ’s Acceptable Solutions (AS) into Le-
galDocML (i.e. document structure) and LRML (i.e. 
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semantics of regulatory provisions). An example of 
the LRML format is shown in Listing 1. The Legal 
Knowledge Management Dictionary (LKMD) was 
introduced to normalise functional (fuvo), opera-
tional (lovo), and building (buvo) vocabulary. Ex-
pressions (expr) consisting of subject (var), property 
(rel), predicate (fun), and object (data) were extract-
ed from regulatory statements, and conditions and 
conclusions (if/then), deontic operators (e.g. obliga-
tion), and relationships (and/or) were identified. This 
information was then validated and encoded using 
their LRML converter.  

 
<ruleml:Rule key="NZ_NZBC-D1AS1#2.6_r1.1.4"> 

<ruleml:if>  
<ruleml:Expr> 

<ruleml:Fun iri="lovo:has"/> 
<ruleml:Atom> 

<ruleml:Rel iri="buvo:occupant"/> 
<ruleml:Var iri="buvo:building"/> 

</ruleml:Atom> 
<ruleml:Data xsi:type="xs:string"> 

disability 
</ruleml:Data>  

</ruleml:Expr> 
</ruleml:if> 
<ruleml:then> 

<ruleml:And> 
<lrml:Obligation>...... 

 
Listing 1. LRML excerpt for Section 1.1.4 in AS1 for New 
Zealand Building Code Clause D1 Access Routes (Ministry of 
Business, Innovation and Employment, 2017) 

1.4 Automatic translation 
Since 2010, research has moved from developing an 
effective computable representation to automating 
the cost-intensive manual translation process. Com-
mon solutions involved extracting semantic infor-
mation elements (Zhang & El-Gohary 2016) or enti-
ties and their relations (Li et al. 2020) and 
transforming them into intermediate or executable 
formats (Zhang & El-Gohary 2015). The executabil-
ity depends on the representation’s reasoning capa-
bility and alignment with the building design infor-
mation.  

Information extraction is a complicated process 
because of domain-specific knowledge with often 
convoluted legalese that contains many conditions, 
exceptions, and references. Hierarchical (Zhang & 
El-Gohary 2019) and ontology-supported extraction 
approaches try to overcome some of these difficul-
ties. Ontologies combined with rule-based systems 
achieved accurate results in narrow domains (Zhang 
& El-Gohary 2016, Zhou & El-Gohary 2017). Re-
cently, ML-based approaches have become more 
prevalent and successful with the overall progress in 
deep learning (Zhang & El-Gohary 2020). 

1.5 Training on digitised regulations 
In this research, we aim to unify both directions, the 
manual and automatic translation of regulatory 
statements, by utilising the LRML translations by 
Dimyadi et al. (2020) to train a neural semantic par-
ser (NSP). This parser aims to generate LRML rules 
corresponding to previously unseen regulations end-
to-end. While the structure can be predicted reason-
ably well, the NSP developed by Fuchs et al. (2022) 
had problems generating semantically correct rules. 

We hypothesise that issues associated with manu-
al translation, such as inconsistent translation, pre-
vent the NSP from learning a suitable task abstrac-
tion. This leads to the following research questions:  
- RQ1: To what extent is the quality of the training 

data responsible for the success in translating 
regulatory statements automatically?  

- RQ2: How can the manual translation of regulato-
ry statements be improved using an NSP?  

To answer these research questions, we investi-
gate the quality of the LRML rules using an NSP in 
Section 2, normalise the LRML rules in Section 3, 
evaluate the normalisation steps and LRML repre-
sentation in Section 4, discuss the implications in 
Section 5 and draw conclusions in Section 6. 

2 INVESTIGATING LRML BUILDING 
REGULATIONS 

2.1 Problems associated with manual translation 
The LRML corpus used in this work is the output of 
the research investigation into how NZ’s AS can be 
represented in LRML described in Section 1.3. 
Dimyadi et al. (2020) followed systematic transla-
tion methods, conducted a peer-review to verify that 
the LRML rules fully represent the regulation text 
and aligned the entity extraction process with the 
buildingSMART Data Dictionary (bSDD) (build-
ingSMART 2022) and LKMD. But having multiple 
participants in the translation process creates varia-
tions in the modelling styles (Artstein 2017). Fur-
thermore, the participants had different levels of 
domain expertise leading to different perspectives 
and priorities. Even for individual participants, the 
encoding style can change with practice, experience, 
concentration, and motivation (Poesio et al. 2017).  

2.2 Neural semantic parsing to identify data 
inconsistency 

We use the NSP introduced in Fuchs et al. (2022) to 
generate the LRML rules and assess the quality of 
the training data and the potential of fully automat-
ing the translation. Figure 1 provides an overview of 
preparing the data and training and evaluating the 
deep learning model used for the error analysis in 
Section 2.3 and the experiments in Section 4. 



Figure 1. The process of translating and evaluating LRML

2.2.1 Data preparation
Due to memory requirements of the self-attention 
used in transformer-based models (Vaswani et al. 
2017), there is a limited number of input and output 
tokens. XML-based formats, including LRML, are 
typically verbose, making it difficult to be generated
with such a model. Accordingly, we condensed the 
LRML format as seen in Listing 2 and normalised 
references and the camel case notation using regular 
expressions. Then, we aligned the LRML rules semi-
automatically with the AS in PDF. 

if(expr(
fun(has),
atom(rel(occupant),var(building)),
data(disability))),

then(and(obligation(......

Listing 2. Short form of the LRML excerpt in Listing 1

2.2.2 Training
We selected T5-base (Raffel et al. 2019), a trans-
former-based deep learning model trained on Ab-
stract Meaning Representation (AMR) parsing 
(Knight et al. 2020), referred to as T5-AMR (Jascob 
2022) throughout this paper. T5 uses an encoder-
decoder architecture, which is advantageous for 
tasks such as translation. It is trained with a text-to-
text paradigm. That means the task description is 
prepended to the input text, allowing one to use the 
model for transfer and multi-task learning without 
significant effort. The pre-trained T5-base and T5-
AMR models are freely available. The training in-
cludes unsupervised training on masked-language 

modelling (Devlin et al. 2018) and supervised train-
ing on classification, paraphrasing, natural language 
inference, sentence completion, word sense disam-
biguation and question answering. The additional 
AMR pre-training increases the model's suitability 
for semantic parsing.

2.2.3 Evaluation
BLEU (Papineni et al. 2002) and a format specific 
F1-Score detailed in (Fuchs et al. 2022) were used to 
evaluate the NSP. BLEU measures the n-gram over-
lap between the ground truth and the predicted out-
put. The parentheses and schema terms in the LRML 
format result in high scores, while structural correct-
ness is not guaranteed. In contrast, the F1-Score
evaluates the output by performing element-wise 
comparisons with the ground truth, scoring each re-
lation and entity by the number of correct and incor-
rect words per entity. While this measure empirical-
ly correlates to BLEU, its lower scores reflect the 
translation quality more accurately. 

2.3 Analysis of common inconsistencies and 
translation difficulties

Fuchs et al. (2022) followed the hypothesis that the 
primary concern in LRML parsing is the scarcity of 
training data. Data augmentation and multi-task 
learning strategies were applied to improve the 
translation with permuted training data and out-of-
domain datasets. While these interventions can im-
prove the baseline performance of T5-AMR, this 
marginal improvement was not satisfactory and led 
us to search for the problems in the data used to train 
the NSP. Hence, we investigated the primary error 
sources starting with the poorest NSP predictions. 
We identified the following four error sources or-
dered by severity: 1) inconsistent encoding, 2) com-
plex LRML expressions, 3) non-correspondence be-
tween regulatory statements and LRML rule, and 4)
implicit encoded knowledge.

2.3.1 Inconsistent LRML encoding
Foremost, three documents containing 46 LRML 
rules were generated with an early version of the 
LRML converter. The differences in encoding and 
input validation introduce considerable noise, 
making it challenging to learn meaningful patterns.

A large problem of manual translation is main-
taining the consistent use of expressions. This was 
encouraged by encoding guidelines and the LKMD 
but not enforced for all entity types. For example, in
the clause The installation of solar collectors must not […] 
damage any protective coatings., the damage of protective 
coatings could be translated in two different ways:
fun(is),atom(var(protectiveCoating)),data(damaged) and fun(
has),atom(var(protectiveCoating)),data(damage). While 
both expressions are valid interpretations, the second 
is preferred to allow referencing the damage entity.



Another widespread inconsistency is the level of 
abstraction used for the translation. While the encod-
ing guidelines advise splitting entities into their ca-
nonical form, the decision of whether an entity is 
canonical (i.e. a well-defined object or property) is 
based on expert judgement. In the previous example,
the var(protectiveCoating) could be split further using
the LRML expression fun(is),atom(rel(type),var(coating)),
data(protective). The bSDD should be consulted to de-
cide on an appropriate abstraction level.

Cross-references to tables, figures, calculations 
and paragraphs, as well as references to related AS
and other legal documents such as standards are 
common constructs in legal documents. Since there 
is no normalised referencing style in the natural 
language text, it is no surprise that the naming 
conventions used by the experts differed strongly. 
Similar problems could be found in other entities, 
where the camel case naming convention was ne-
glected, articles and other unnecessary information 
were not removed, and terms were not normalised.

Finally, logical soundness was not ensured for all 
LRML rules. To allow the automatic execution of 
rules using a theorem prover, we must ensure that all 
necessary relations between entities are extracted 
and encoded. For example, the precondition Concrete 
floors was translated as fun(is),atom(var(floor)),data(
TRUE) and fun(is),atom(var(material)),data(concrete) ignor-
ing the property relation between floor and material:
fun(is),atom(rel(material),var(floor)),data(concrete). This 
mistake would result in all concrete building objects 
being checked instead of only concrete floors.

2.3.2 Complex LRML encoding
The LRML rules have been encoded to achieve high 
executability. LRML constructs and expressions that
allow defining variables and loops were necessary to 
formalise entities such as 1PerEverySecondFloor in 
sufficient granularity. Variable definitions serve as a 
shortcut to frequently used object properties and 
help formulate calculations and avoid ambiguities. 
Since there are often alternative ways to translate the 
same information and variables are named inconsist-
ently, these expressions are challenging for the NSP.

An LRML construct for loops closes the func-
tional gap to programming languages but comprises 
the highest complexity. For example, rulestatement(
expr(fun(in),expr(fun(forEach),atom(var(side))),data(slab)))
loops through all sides of a slab, and appliedstatement(
obligation(expr(fun(has),atom(var(side)),data(support)))) ap-
plies the obligation that each of the sides has sup-
port. It is debatable whether such constructs should 
be used in declarative languages. While the expected 
executability increases, the translation task becomes
difficult without programming expertise, and the 
correctness of such expressions is complex to verify. 
Having only 26 rules using this construct in our final 
dataset and considering the added complexity, a cor-
rect generation of these constructs is not expected.

2.3.3 Alignment between LRML and regulations
The alignment between LRML rules and regulatory 
statements is on a sentence level. It does not account 
for cases where a single sentence was translated into 
multiple LRML rules to change the regulatory text 
as little as possible. Some misalignments were iden-
tified in situations where subclauses are untranslated 
or combined to one LRML rule. Such cases make it
difficult to learn an accurate translation and lead to 
an NSP that tends to miss relevant information.

2.3.4 Implicit information
The last category includes LRML rules that use 
terms or expressions that cannot be deduced directly 
from the regulatory statement. For example, 
information from tables, figures, and clauses higher 
in the hierarchy was included in LRML rules, or
implicit references such as this document were 
replaced with the building code reference.

More experienced domain experts tended to 
interpret regulatory statements more loosely, leading 
to LRML expressions dissimilar to the regulatory 
text and the requirement of domain knowledge for 
the NSP. Examples are summarising phrases or 
subclauses in a single LRML expression and using 
concepts related to the building design information.

3 NORMALISING THE LRML CORPUS

Figure 2. LRML normalisation process



   
 

   
 

Figure 2 describes the methodology to resolve the 
error sources described in Section 2.3. One research-
er with experience in the construction domain, ACC, 
and semantic representations performed the data 
cleansing. A second researcher with many years of 
experience in these domains reviewed the changes. 

3.1 Semantic correctness 
A full understanding of both the regulatory state-
ment and the LRML rule is necessary to judge se-
mantic correctness. The variety of acceptable encod-
ing styles was retained by changing only a 
minimum. We tag some rules with non-canonical 
entities and untranslated phrases instead of fixing 
them to keep the effort manageable. In Section 4.3, 
the NSP will be conditioned on these tags to im-
prove the performance. The following steps were re-
peated for each LRML rule: 
1. Adjust clause alignment (Section 2.3.3): Delete 

untranslated subclauses or entities. Tag sentenc-
es with untranslated phrases. 

2. Add implicit information (Section 2.3.4): Prepend 
or add required clause titles, table headers, etc.  

3. Fix LRML converter warnings (Section 2.3.1): 
Fix all warnings and errors to allow re-encoding 
of the LRML documents. Replace unsupported 
functions with alternative expressions. Remove 
or fix rules with no condition or conclusion.  

4. Improve semantic consistency (Section 2.3.1): Fix 
the inconsistent use of functions. E.g. fun(define) 
defines a variable, fun(is) performs qualitative 
comparisons and fun(equal) evaluates quantities.  

5. Ensure logical soundness (Section 2.3.1): Add 
missing relations. Split entities into atomic com-
ponents. Double-check deontic operators. 

3.2 Syntactic normalisation  
Some inconsistencies can be fixed automatically or 
by investigating the LRML rules in isolation. The 
legal references constitute the largest group. Investi-
gating the most common formats nzbc-g13as1.1.1 and 
G13/AS1Paragraph1.1.1, we found ambiguities in dash-, 
slash-, and dot-notations. We introduced a new nota-
tion suitable for generation (i.e. nzbc_g13as1_1.1.1). 
Similarly, variable names are normalised with x0, x1, 
x2, etc. Other inconsistencies, such as abbreviations 
and plural terms, were identified using semantic 
similarity and cleansed automatically.  

3.3 Future improvements 
While significant improvements are expected 
through the LRML normalisation process, several is-
sues identified in Section 2.3 are not resolved and 
need further discussion and evaluation. Foremost, 
the issue types tagged in Section 3.1 need rework us-
ing a proper grounding in domain dictionaries and 

ontologies. The tagged issues and complex LRML 
constructs (Section 2.3.2) require experimental in-
vestigation before the effort to make changes is jus-
tified. Subsequently, these aspects can be addressed 
iteratively based on the experiments in Section 4. 

4 EVALUATING THE LRML CORPUS 

4.1 General setup and baseline enhancements 
The following experiments use the setup described 
in Section 2.2. T5-AMR is trained using the Hug-
gingface library, the T5-base tokeniser, and the fol-
lowing hyperparameters: Batch size: 4, Learning 
rate: 2e-4, Weight decay: 1e-4, Warmup steps: 100, 
Epochs: 30, Early stopping patience: 5, Beam size: 5 
and Others: Default. We run each experiment with 
three random seeds and report the average validation 
F1-Score and BLEU-Score with associated standard 
deviations from the epochs with highest F1-Scores. 

Table 1 shows the performance of our baseline 
model (i.e. last row), including a stepwise evaluation 
of several adaptations to Fuchs et al. (2022). While 
removing invalid samples and adjusting schema 
terms had minor negative implications, introducing a 
strict validation split to evaluate the generalisation 
capabilities decreased the results significantly. This 
effect could be reduced by increasing the maximum 
token length and improving the LRML tokenisation. 

 
Table 1.  Establishing the T5-AMR baseline  ___________________________________________________ 
Setting     Size+     BLEU*   F1-Score* ___________________________________________________ 
Original     606 (545/61)  50.2% (3.2) 38.5% (2.2) 
+ 1024 tokens1  606 (545/61)  47.9% (5.3)6 39.5% (0.5) 
-  Invalid LRML2 599 (539/60)  44.2% (0.5)  39.2% (0.8) 
+ Document-split3 599 (542/57)  33.3% (6.5)6 33.7% (1.3) 
+ Spacing4    599 (542/57)  38.1% (3.6) 35.5% (0.8) 
+ Schema terms5  599 (542/57)  36.8% (2.5) 35.0% (0.4) ___________________________________________________ 
+ Number of samples: Dataset (Training/Validation set) 
* Standard deviation in brackets 
1 Increase output token length from 512 to 1024 to match the 

maximum tokens required to encode all LRML samples 
2 Remove seven invalid LRML rules without preconditions. 
3 Test generalisation capabilities by ensuring all rules for an 

AS are either in the training or validation set. 
4 Improve tokenisation: fun(greaterThan -> fun( greater than 
5 Baseline: Adjust tokenisation of schema terms to decrease 

the token length: expr -> expression, fun -> function ... 
6 Higher standard deviations for BLEU scores due to selecting 

the best run according to F1-Scores. 

4.2 LRML normalisation experiments 
We investigate the LRML normalisation in the low-
est possible granularity. The clause alignment (Step 
1) can be programmatically separated from the add-
ed implicit information (Step 2). Since Steps 3-5 
were conducted in sequence, there is no clear separa-
tion of these steps leading to a combined investiga-
tion. Fixing all LRML converter warnings increased 
the number of LRML rules. We excluded these addi-



   
 

   
 

tional rules from the initial comparisons and added 
them in the last experiment to allow fair comparison.  

Table 2 shows the high impact of adjusting and 
re-generating the LRML rules, which led to 8.5% 
rise in F1-Score. In contrast, adjusting the align-
ment, normalising references and entities, and add-
ing rules caused less progress, and auxiliary input of 
implicit knowledge degraded the results. 
 
Table 2.  Improving results with data normalisation  _________________________________________________ 
Setting    Size+     BLEU*   F1-Score* _________________________________________________ 
Baseline    599 (542/57)  36.8% (2.5) 35.0% (0.4) 
+ Step 1    599 (542/57)  37.6% (2.3) 37.6% (0.4) 
+ Step 2    599 (542/57)  38.2% (1.9) 37.5% (0.3) 
+ Step 3-5   5881 (534/54)  58.5% (4.2) 46.0% (0.9) 
+ References  588 (534/54)  55.0% (5.8) 46.4% (0.7) 
+ Entities   588 (534/54)  59.7% (3.2) 46.5% (0.8) 
+ Add. Data  760 (704/56)  60.7% (3.4) 48.0% (0.8) _________________________________________________ 
+ Number of samples: Dataset (Training/Validation set) 
* Standard deviation in brackets 
1 Some rules were merged to avoid duplication. 

4.3 Value conditioning 
According to Section 4.2, the semantic changes to 
the LRML rules had the highest impact on perfor-
mance. Since these changes require high manual ef-
fort, we investigate value conditioning, a method of 
inputting additional information about an LRML 
rule, as an alternative to fixing the issues. This tech-
nique is closely related to prompt engineering and 
prefix-tuning, two popular techniques to fine-tune 
and improve language models (Li & Liang 2021). 

We appended eight different tags (see Table 3) 
about complex LRML constructs and encoding is-
sues to the input text and tested the impact. As a 
control group, we deleted the tagged rules from the 
dataset. We expected the parsing performance to rise 
or stay similar if the removed rules are too complex 
or introduce too much noise. Otherwise, the scores 
should drop because of the decreased dataset size. 

The results in Table 3 suggest that the NSP has 
no benefit in knowing details about the structure of 
the rules. To the contrary, concatenating additional 
information consistently worsened the model’s F1-
Scores. The additional information or grouping of 
certain LRML rules seems to confuse the NSP. Also, 
there is no clear correlation between removing rules 
and adding the tag. So, a re-evaluation after improv-
ing the NSP performance will be considered to test if 
these results are caused by existing problems in the 
NSP or the ineffectiveness of the method. 

Nevertheless, removing selected samples indicat-
ed that translating clauses using abstractions and im-
plicit knowledge and leaving out irrelevant infor-
mation is especially problematic for automation. 
Also, removing the clauses containing the key-
construct brought improvements. For an explanation, 
we investigated the files mostly containing this en-
coding style. 33 out of the 114 samples are from the 

documents B1/AS1 and C/AS1, which have the 
worst parsing performance, according to Table 4.  

Finally, LRML clauses using variable definitions 
and loops seem to cause no harm considering the 
current parsing performance. In particular, variable 
definitions might be more predictable as expected. 
 
Table 3.  Addressing complex LRML expressions ___________________________________________________ 
Setting   Size+    Conditioning*   Removed*           ______________ ______________ 
         BLEU F1-Score BLEU F1-Score ___________________________________________________ 
Baseline  704/56  60.7% 48.0%  ------------------ 
Ignore1   126/22  49.0% 43.5%  62.2% 48.8% 
Implicit2  138/15  60.7% 46.6%  61.1% 49.5% 
LOD3   704/56  56.6% 45.0%  ------------------ 
Medium3  205/22  60.0% 45.2%  57.5% 48.7% 
Coarse3   112/6  52.3% 45.9%  58.0% 47.7% 
Loop4   24/2   59.8% 46.1%  55.4% 47.1% 
Define5   126/1  59.1% 46.0%  58.3% 46.4% 
Key6    114/4  54.9% 45.9%  58.5% 48.8% 
Document7  704/56  59.6% 46.5%  ------------------  ___________________________________________________ 
+ Affected rules in training/validation set 
* The standard deviation was removed due to space limitation 
1  Some parts of the regulatory statement were not encoded. 
2  The LRML rule contains unknown information. 
3  Level of detail – Refers mostly to the number of concepts in 

entities. Fine-grained, medium-grained, and coarse-grained. 
4  The LRML rule contains a loop or similar construct.  
5  The LRML rule contains variable definitions. 
6  Reference encoded with a document and number expression. 
7  Input the AS specifier (e.g. b1as1) to learn about implicit 

references or document specific translation styles. 

4.4 Document specific evaluation 
Finally, we use our experimental setup to compare 
the quality and complexity of the LRML rules per 
regulatory document. To allow fair comparisons, we 
train all documents with the same number of sam-
ples (i.e. 518 for E2/AS1). Additionally, we report 
the results for random splits of the reduced and full 
datasets as upper boundaries on removing the need 
to generalise across topics. We draw three conclu-
sions from the results in Table 4: 
1. Different AS for the same building code have high 

conceptual or encoding similarities. So, results 
are closer to the upper limit. See G12 and G13. 

2. The baseline has worse results than the individual 
documents in the baseline, indicating the benefit 
of having a more versatile training set. 

3. The suggested method can be used to identify 
problematic documents. For example, B1/AS1 
and C/AS2 need further investigation.  

Table 5 compares B1/AS1 and C/AS2 against 
similar-sized documents with medium performance 
based on the complexity classes introduced in Table 
3. Both documents have a high number of define- 
and key-constructs. C/AS2 has the topic “Protection 
from Fire” and was encoded by experts using loops, 
calculations, and complex constructs to achieve high 
executability. B1/AS1 contains clauses that describe 
textual changes to referenced standards. Since the 



   
 

   
 

LRML expressions used to encode these changes are 
unique to this AS, the NSP has not learned to gener-
ate expressions similar to the human translations. 

 
Table 4.  Document specific comparison  ___________________________________________________ 
Document   Size+     BLEU*   F1-Score* ___________________________________________________ 
Baseline1   574 (518/56)   58.8% (6.4) 46.0% (0.5) 
B1/AS1    580 (518/62)  52.9% (1.0) 40.7% (1.3) 
C/AS2    573 (518/55)  59.4% (1.4) 42.8% (0.6) 
Others2    529 (518/11)   48.2% (9.5) 47.2% (1.4) 
G14/VM13   556 (518/38)   65.3% (0.6) 48.2% (1.6) 
D1/AS13   528 (518/10)   66.7% (1.0) 49.2% (1.9) 
B2/AS13   526 (518/8)   55.9% (8.5) 50.2% (1.9) 
E2/AS14   760 (518/242) 58.6% (3.7) 50.8% (0.2) 
G15/AS1   539 (518/21)   64.8% (0.4) 52.4% (1.8) 
G12/AS2   573 (518/55)  59.5% (4.4) 53.4% (1.6) 
E1/AS1    579 (518/61)  61.1% (3.3) 53.8% (0.9) 
B1/AS3    578 (518/60)  61.4% (3.1) 54.9% (1.1) 
G13/AS1   550 (518/32)   64.1% (2.0) 57.4% (0.6) 
G13/AS2   571 (518/53)  67.5% (3.2) 57.6% (1.2) 
G12/AS1   570 (518/52)  68.4% (2.5) 59.6% (1.8) 
Random 4/5   600 (518/82)   73.9% (2.5) 67.3% (1.2) 
Random5 full  760 (684/76)  74.2% (3.7) 71.6% (4.0) ___________________________________________________ 
+ Number of samples: Dataset (Training/validation set) 
* Standard deviation in brackets 
1 Comparable baseline with 518 training samples 
2 E3/AS1(4), G14/AS1(4), G1/AS1(2), G4/AS1(1), C/VM(1) 
3 Baseline validation documents 
4 Up to 82 rules of E2/AS1 were randomly selected to train 

the other documents. 
5 Average of three splits with different random seeds. 
 
Table 5.  Complexity comparison  ____________________________________________ 
Setting   B1AS1   CAS2  B1AS3  E1AS1 ____________________________________________ 
All    62    55    60    61 
Ignore1   8    14    4    15 
Implicit2  5    5    16    1 
Medium3  17    11    9    25 
Coarse3   2    2    13    7 
Loop4   0    8    6    2 
Define5   31    20    8    10 
Key6    17    16    7    1 ____________________________________________ 
1-6 See Table 3 for descriptions 

5 DISCUSSION 

The experiments in Section 4.2 confirmed the effi-
cacy of the treatments suggested in Section 3. Fur-
thermore, Section 4.3 indicates that the untreated 
problems of Section 2.3 lead to genuine concern and 
should be treated in future work. We can conclude 
that manual information extraction from building 
regulations is not necessarily the best solution. In 
addition to time, cost and effort, this process can 
cause inconsistencies, under- and over-specification, 
unsound logic, and complex interpretations. The 
freeform data extraction is seen as an insufficient so-
lution if the necessary tool support and input valida-
tion are missing (Biemann et al. 2017). Three en-
hancements are suggested: First, the LKMD should 
be fully integrated into the extraction process to val-
idate all entities and relations, suggest relevant 

terms, and allow safe and quality-assured dictionary 
management. Second, retrieving LRML expressions 
for related phrases could prevent inconsistent trans-
lations (Song et al. 2018). Finally, the logical sound-
ness of the LRML representation should be evaluat-
ed to identify missing relations (Wang et al. 2018). 

While the NSP performance is not yet sufficient 
for fully automated translation, we see a payoff for 
this method in validating manual translations and for 
the integration into a semi-automatic translation pro-
cess. Having established an upper limit of 71.6% F1-
Score for the random validation split is a good sign 
for the feasibility of seq2seq models for LRML pars-
ing. Nevertheless, the high disparity compared to the 
generalisation split might not be limited to the gen-
eralisation capability but also be connected to the 
training data variety and repetitiveness of weaker 
models’ generated output. In particular, the average 
length ratio between the translations and references 
was 0.93 for random splits (Table 4), 1.11 for the 
best model in Table 2, and 1.45 for the baseline 
model in Table 2. 

6 CONCLUSIONS AND FUTURE WORK 

This work brings us closer to the ambitious task of 
automatically translating building regulation end-to-
end into semantic representations useable for ACC. 
We improved the parsing performance on a generali-
sation validation split from 33.7% to 48.0% F1-
Score by improving the LRML tokenisation, the 
alignment between regulatory statements and LRML 
rules and the consistency and soundness of the 
LRML rules. For random validation splits the NSP 
has achieved 71.6% F1-Score. Furthermore, we have 
identified LRML constructs, encoding styles and en-
tire documents that remain problematic. These prob-
lems can be resolved iteratively using an NSP to in-
dicate problems and provide alternative translations. 

The next step in this research will be to systemat-
ically translate topically and structurally unrelated 
international building regulations to provide an un-
biased test set to verify the scalability and correct-
ness of the improved LRML corpus. Additionally, 
we will test more sophisticated model architectures, 
training procedures and decoding strategies to re-
solve problems unrelated to the dataset quality. Fi-
nally, we plan to ground the NSP with the bSDD and 
LKMD and teach it about the construction domain. 
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