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ABSTRACT 

Each year, there are around 6000 injuries on the New Zealand construction site that have resulted 

in more than a week away from work [1]. It is critical for the government to implement a new 

measurement to detect construction site hazards, thus preventing accidents from happening. This 

paper focuses on identifying personnel on site and determines whether they are wearing 

personal protective equipment (PPE), such as hard helmet and high-visibility clothing (Hi-Vis). 

The process of this project includes data processing, image annotation, image augmentation, 

dataset split, and training and testing of faster region-based convolutional neural networks (R-

CNNs). The final model of this project achieves 75.9% mAP at IoU 0.5 on the testing dataset. 
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1. INTRODUCTION 

1.1 Organisation 

1.1.1 Downer 

Downer is the leading expert in construction and urban service, including airports, ports, railway, 

road, power, gas, streetscape, and cycleways. The company’s health and safety objectives are to 

achieve zero harm and ensure the safety of its people, contractors, and community [22]. 

1.1.2 UC SAIL 

University of Canterbury Spatial And Image Learning (UC SAIL) group works on research in 

collaboration with Waka Kotahi NZ Transport Agency (NZTA), Christchurch City Council (CCC), 

Christchurch Airport, AgResearch, and Stats NZ Tatauranga Aotearoa. The UC SAIL group 

research in image processing and machine learning problems and develops prototypes for 

deployment. UC SAIL group is kindly supported by the UC School of Mathematics and Statistics, 

UC Research, and Innovation, and KiwiNet [2].  

1.2 Goals 

The primary goal of this project is to identify any personnel on the construction site and run a 

simple safety check on them. By using state-of-art image machine learning techniques, any 

personnel, PPE such as hard helmet and Hi-Vis vest can be located on the image. Additionally, a 

relationship between the PPE and the on-site personnel can be established: whether they are 

wearing PPE as required, wearing some of the equipment but not all of them, or not wearing any.  

The secondary goal is to define the boundary of the construction site. The construction site is 

usually surrounded by cones, barriers, fences, or straps. By identifying these items on the image 

using object detection algorithms, then the area enclosed by them is determined to be the 

construction site. 

The third goal of this project would be checking whether the person in the image is inside the 

construction site or not. Passengers are not required to wear any PPE. Excluding passengers will 

prevent this system from making a false alarm. This can be achieved by finding out the positional 

relationship between the personnel, which is identified in the primary goal, and the construction 

site boundary, which is identified in the secondary goal. 
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2. DATA 

2.1 Data information 

The dataset which was used in this project is provided by Downer. All the data came in video 

format, which was taken in an underground tunnel construction site under the railway near 

Wellington. All the videos were taken in April 2021. Three videos were taken by camera one, came 

as mxf format, altogether 39 seconds long; three videos were taken by camera two, came as mp4 

format, altogether 4 minutes and 16 seconds long; and another two videos were taken from a 

drone, came as mov format, altogether last 4 minutes and 4 seconds. All the videos are in high-

definition resolution, which is 1920 pixels wide and 1080 pixels high. Two example frames 

extracted from the videos are shown in figure 1 and figure 2 in Appendix A 

2.2 Constraints 

All the data was provided by Downer. Due to the purpose of protecting the privacy of the 

employees and the company, all the human faces and the company logos, which are shown in the 

image, need to be covered or blurred in the final product. A non-disclosure agreement (NDA), 

which is drafted by Downer, is signed by the University of Canterbury. The project team is also 

required complying with the NDA.  

The data was handed over on 17th January 2022, which left four weeks for the project team to do 

the image annotation, model training and testing. Shortened project period results in an affected 

and limited project outcome. 

The video data was expected to be taken from a stationary monitoring camera on top of a pole. 

The monitoring camera should record continuous videos for the whole site. The camera should 

also be placed within 30 meters from the working crews. On the contrary, the videos were taken 

from either a drone or a handheld camera, thus the shooting angle could not be guaranteed to be 

perfect. As shown in figures 3 and 4, People and PPE were not always occurring in the image, 

which made a portion of the data unusable. People, Hi-Vis vest and hard helmets could not be 

detected by the algorithm if they were too far away from the camera since there were not enough 

pixels for the object detection model to process. The boundary of the construction site could not 

be seen in most of the frames, which is led by a camera too closed up or too further away. An 

example of an image that was taken too far away from the construction site was shown in figure 

5. The inadequate camera setup made the secondary and the ultimate goal of this project 

unachievable. Each video frame was 1920 pixels in height and 1080 pixels in width. The video 

resolution was also lower than expected. Due to these constraints imposed by the provided 

dataset, only the primary goal of this project is achieved. 
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Figure 3. Inadequate video footage due to no presence of people and PPE. 

 

Figure 4. Inadequate video footage due to no presence of people and PPE. 
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Figure 5. Inadequate video footage due to shot too far away from the construction site. 

3. METHODOLOGY 

3.1 Environment setup 

This project is running on a remote computer which is located at the University of Canterbury. 

The remote computer uses Ubuntu 18.04.5 system, i9-10900X CPU with 10 cores and 20 threads, 

and NVIDIA GeForce RTX 3090 GPU with 24 GB of RAM. 

This project is based on the faster R-CNN model provided by OpenMMLab and mmdetection. 

OpenMMLab is a next generation platform for general 3D object detection. Mmdetection, which 

is an open-source object detection toolbox based on PyTorch, is a project inside OpenMMLab. To 

run mmdetection on the remote server, Pytorch, torchvision, and CUDA are installed. Pytorch and 

CUDA are needed to be installed with the correct version to avoid compliance issues. In this case, 

Pytorch 1.10.1 and CUDA 11.2 are installed as suggested. Additionally, this project uses python 

packages NumPy, OpenCV, OS, pandas to perform data wrangling on the received dataset. 

3.2 Data pre-processing  

The data provided by Downer came in video format. Certain procedures must be done to the 

dataset so that it could be recognised by the object detection model.  



9 
 

3.2.1 Frame extraction 

Because videos were shot from different angles, some video footage was determined to be 

irrelevant to this project. The video shot by the drone was too far away from the construction site, 

which made people and PPE in the image too small to be detected. An example of drone footage 

is shown in Figure 5. Since videos taken by drone were not sufficient for the object detection 

model, they were not used in this project. Furthermore, a video shot by camera one was fixed on 

a digger with zero people shown in the image, it was excluded from this project. One frame from 

it is shown in figure 4. 

Once relevant videos were decided, frame extraction was done to the videos and obtained the 

image for the model training. The videos were all 50 frames per second. To balance between not 

having enough images to train the model and having too many images so that the time between 

two images was short thus overfitting the model, every tenth frame from the videos were 

extracted. The python code attached in Appendix A was written to conduct frame extraction. 

There are 1323 images extracted in total. Each image is 1920 x 1080 in pixels. 

3.2.2 Image annotation 

Image annotation aims to label the images inside a dataset to train an image machine learning 

model. The annotation process consists of four steps, including defining objects’ classes, drawing 

bounding boxes, labelling the bounding boxes, and exporting the annotation with the desired 

format. 

VGG Image Annotator (VIA) was used to label the images. VIA is a simple and standalone manual 

annotation software which runs in a web browser and does not require any installation or setup 

[3]. The objects required to be labelled in this project were people, hard helmets, and Hi-Vis vests. 

These were the three categories that are used during the annotation process. Bounding boxes 

were drawn around the all the objects which can be distinguished by the human eye. Since the 

bounding boxes were all rectangles, containing noisy information such as background was 

unavoidable. However, bounding boxes should be drawn as close to the object as possible while 

covering every aspect of the object to avoid containing too much noisy data. The left image in 

figure 7 shows a good annotation because the bounding box boundaries are as close to the object 

as they can be. The right image in figure 7 shows an example of a bad annotation since it covers 

too much background. 

The annotations were then exported in json format, which contained information such as image 

file name, image size, shape attribute name, and region. The json file were utilised in the following 

steps. 
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Figure 7. Good annotation (left) versus bad annotation (right) 

3.2.3 Train-valid-test split 

Train, validation, and test data split is essential for all supervised machine learning models. It is 

used to evaluate the performance of a model. In this project, 1324 images were randomly split 

into train, valid, and test datasets in the ratio of 4:2:1. This resulted in 756 images in the training 

dataset, 378 images in the validation dataset, and 189 images in the testing dataset. 

3.2.4 Image augmentation 

Data augmentation is a widely used method for generating additional data to improve machine 

learning systems [5]. It randomly generates new images by processing existing images using a 

certain dedicated method. More images mean there is more data to train the model, which usually 

gives a better result. However, prior knowledge in the researching field and intensive manual 

work is often part of the data augmentation requirement. The final product of the image 

augmentation needs to match what it can be in the real world. For example, a human’s photo can 

be flipped horizontally or tilt to a certain angle but cannot be flipped vertically since the case is 

rare when a human is seen upside down.  

The images in this project were treated with common sense. Since workers could be shot on either 

left or right side, the images in the training dataset are flipped horizontally. Furthermore, workers 

can be shot working on a slope, thus the images in the training dataset were randomly rotated 

with an angle in between 15 degrees clockwise to 15 degrees anti-clockwise. The image 

augmentation expanded the training dataset three times its original size. Eventually, there were 

2268 images in the training dataset. 
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The train-valid-test split and image augmentation were produced by Roboflow. Roboflow is an 

online image machine learning aid tool which offers help in every stage of the object detection 

model development [20].  

3.3 Model  

3.3.1 R-CNN 

Before the invention of the R-CNN method, CNN fell off the object detection stage after the rise of 

support vector machines in the 1990s. The reason why CNN lost its popularity was that the 

objects of interest might have different spatial locations and different aspect ratios, which led to 

an increasing number of regions that need to be selected and demanded huge computation 

resources [7]. In 2014, Ross Girshick and his team solved the CNN localization problems by 

extracting 2000 region proposals, using large CNN to compute features for each region, and 

classifying each region using linear support vector machines (SVMs) [8].  

The advantage of the R-CNN algorithm was it was the most accurate object detection method at 

its time, and it achieved a 30% relative improvement towards the previous best result. However, 

as in the first stage of the development of the R-CNN model, it required a lot of computational 

resources and it was very slow to run both in training and testing stages: it was 9 times slower 

than the OverFeat, which was the second-best object detection method in accuracy in 2014 [8]. A 

ConvNet forward pass was performed individually for every object proposal without sharing 

computation was the main reason making R-CNN slow. 

3.3.2 Fast R-CNN 

In 2015, Ross Girshick came up with an idea to speed up the process of R-CNN and it was called 

Fast R-CNN. The entire image was input to the CNN to generate a conv feature map instead of 

feeding it region proposals. For each proposal, a region of interest (ROI) pooling layer extracted 

a fixed size feature vector and established the feature map [9]. Then, a softmax layer was used to 

estimate probabilities of all classes and another layer offset values for bounding boxes. 

Fast R-CNN was significantly faster than the previous R-CNN method because 2000 region 

proposals did not need to be input into the CNN every time. Using VGG 16 dataset, the training 

time for Fast R-CNN is 9.5 hours, which was 9 times faster than using the old R-CNN method [9]. 

The testing rate for Fast R-CNN was 0.32 seconds per image, which was also much faster than 

using R-CNN which is 47 seconds per image [9]. The accuracy of the Fast R-CNN method did not 

drop because of the short training and testing time. On contrary, on the VOC 2012 test, the mean 

average precision (mAP) for the Fast R-CNN model is 65.7%, which is higher than the 62.4% for 

R-CNN model. 



12 
 

3.3.3 Faster R-CNN 

Both R-CNN and Fast R-CNN used selective search, which was slow and time-consuming, to find 

the region proposals [7]. Shaoqing Ren et al. replaced the old selective search with the Region 

Proposal Network (RPN), which shared full-image convolutional features with the detection 

network and reduced the proposal computing time to 10 milliseconds per image [6]. The 

structure of RPN is shown in figure 8. RPN worked on the feature map generated by the last 

convolutional layer. An n×n size window was sliding across the feature map and generating 

multiple region proposals [10]. An anchor was located at the centre of the sliding window, and it 

was associated with a scale and aspect ratio [6]. The purpose of using anchors was to classify and 

regress bounding boxes with reference to anchor boxes with different scales and aspect ratios to 

achieve multi-scale predictions [6]. The proposed regions then went through a Fast R-CNN 

detector. The structure of the Faster R-CNN object detection model is shown in the figure 9. 

 

Figure 8. Region Proposal Network [6]. 
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Figure 9. Faster R-CNN object detection model structure [6]. 

The use of Faster R-CNN on the VGG-16 dataset showed a significant improvement over the 

previous model. When Fast R-CNN took 320 milliseconds on the VGG-16 dataset using selective 

search proposals, Faster R-CNN only took 198 milliseconds on both proposal and detection [6]. 

Additionally, with shared convolutional features, it only took 10 milliseconds for RPN to compute 

additional layers. Meanwhile, the Faster R-CNN model also achieved 67% mAP on PSACAL VOC 

2012 test set, while the Fast R-CNN model, which used the selective search method, only achieved 

65.7% mAP. 

3.4 Backbone 

The backbone of the model used in this project was a 101-layer ResNeXt network. The ResNeXt 

network was built by repeating a building block that aggregates a set of transformations with the 

same topology [21]. A new dimension called “cardinality” was added to the previous ResNet 

network which only had two dimensions, depth and width. Cardinality not only could improve 

classification accuracy under restricted conditions but was also more effective than going deeper 

or wider when capacity increased [21].  

3.5 Transfer learning 

In machine learning and data mining, an important assumption is that the training data and future 

data will be in the same format. However, many limitations will take place and restrict the usage 

of the data. In this case, transfer learning can be utilised to avoid the heavy labelling cost by 

utilising the previous model’s result [14]. Moreover, in object detection, more labelled data 
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always yields better results. Since there is not always enough data for researchers to conduct a 

new study, transfer learning in object detection enables researchers to share their model result 

and enrich their own studies using others’ outcome. This will significantly boost the model 

accuracy by simply enlarging the database [13]. In this project, A pre-trained model 

“faster_rcnn_x101_64x4d_fpn_2x_coco” was utilised to improve model accuracy [6]. 

3.6 Evaluation measurements 

3.6.1 Intersection over Union (IoU) 

IoU was used to evaluate the performance of an object detector on a dataset. IoU was calculated 

using the predicted bounding boxes provided by the model, and the labelled ground-truth 

bounding boxes. IoU was the overlapped area of two bounding boxes divided by the union of the 

area of two bounding boxes. A larger IoU value meant the prediction is better.  

3.6.2 Loss function 

Faster R-CNN used the loss function to calculate losses at different stages of the model. 

loss_rpn_cls was the number of improper classifications of anchor boxes proposed by RPN. 

Loss_rpn_bbox was the localisation accuracy of RPN. Loss_cls was a loss that measures how 

"tight" the predicted bounding boxes are to the ground truth object. Loss_bbox was a loss that 

measures the correctness of the classification of each predicted bounding box. In this project, the 

loss would be simply calculated by the sum of loss_rpn_cls, loss_rpn_bbox, loss_cls, and loss_bbox. 

3.6.3 Precision and recall 

Precision was calculated by true positive predictions divided by all positive predictions, which 

included true positive and false positive. Recall was the ratio of true positive predictions to the 

sum of true positive predictions and false negative predictions. In general, the precision increased 

when recall decreased, and the precision decreased when recall increased. 

3.6.4 Average precision (AP) and mean average precision (mAP) 

The formula to calculate AP is shown in figure 10. The definition of AP was finding the area under 

the precision-recall curve. The rn represents the nth recall value, and pinterp represents the 

according precision value. 

 

Figure 10. Average precision formula. 
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The AP is usually calculated for one class. The mAP was calculating the mean of AP of all classes. 

The mAP was used to find the portion of the correct predictions in the model. Higher the mAP, 

better was the prediction results. The mAP was evaluated on the final set of bounding boxes at 

two IoU thresholds of 0.5 and 0.75. The upper bound of the IOU threshold (0.75) reflects the 

localization accuracy of the network while the lower bound of the IOU threshold (0.5) reflects the 

detection accuracy [13]. 

4. RESULTS 

4.1 Epochs and loss convergence 

An epoch in object detection means one training cycle through the whole dataset. When training 

a model, as the number of epochs increase, the loss is expected to be lower and converge. The 

model was trained with learning rate of 0.02 with epoch of 24. The loss versus epochs plot is 

shown in figure 11. The overall trend is that the loss was gradually decreasing as the epoch 

increased. After 18 epochs, the loss became stable and converged, thus the training stage was 

decided finished. 

 

Figure 11. Training loss versus epochs. 

4.2 mAP 

The mAP of the prediction is shown in table 1. When IoU threshold was set to be 0.5, mAP was 

determined to be 0.759. When IoU threshold was set to be 0.75, mAP was determined to be 0.345. 

The Object was small when it had less than 1024 pixels. Medium objects had less than 9126 pixels 

but had more than 1024 pixels. Large objects had more than 9126 pixels. As shown in table 1, 

model prediction was getting worse when the object got smaller. 
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Table 1. mAP for various conditions 

 

4.3 Confusion matrix 

Figure 12 shows the model prediction’s confusion matrix. The precision for the hard helmet is 55% 

and the recall is also 55%. The precision for the Hi-Vis vest is 75% and the recall is 81%. The 

precision for human is 75% and the recall for human is 97%. The detection for human and Hi-Vis 

vests performed well, and the detection for hard helmets performed poorly. Hard helmet often 

contain fewer pixels than human and Hi-Vis vest does, so it is hard for the model to detect. 

 

Figure 12. Confusion matrix for hard helmet, Hi-Vis vest, and human. 

Intersection Of Union Object Size Maximum Detections Mean Average 
Precision (mPA) 

0.5:0.95 All 100 0.371 

0.5 All 100 0.759 

0.75 All 100 0.345 

0.5:0.95 Small 100 0.322 

0.5:0.95 Medium 100 0.412 

0.5:0.95 Large 100 0.529 
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4.4 Prediction 

 

Figure 13. Predictions (upper) versus ground truth (lower) 

Figure 13 shows the difference between predictions and the ground truth. Overall, the model did 

a great job on predicting human and high vis vest. There was one hard helmet label missing in the 

prediction. The missing hard helmet was far away from the camera. It was small on the image and 

did not contain too many pixels, so it was hard for the model the detect. This explained why this 

model performed poorly on detecting hard helmets. 
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4.5 Object detection on a new image 

 

Figure 14. Object detection on a new image [19] 

Figure 14 shows the object detection model prediction on a new image. The person on the left 

and the person on the right were successfully detected, but the person in the middle was not. The 

reason could be people in the Downer dataset were all wearing orange Hi-Vis vests, which led to 

the situation that the model cannot recognise people who are not wearing orange Hi-Vis vests. 

This also explained why the orange Hi-Vis vests were detected in the image while green Hi-Vis 

vests were not found by the model. Lack of colour variation on hard helmets in the Downer 

dataset also led to no hard helmet is detected by the model. 

5. SIMILAR STUDIES 

Similar to this project, Nipun Nath, Amir Behzadan, and Stephanie Paal also conducted a study on 

using an object detection algorithm to find people and PPE on the image.  

Different from using the Faster R-CNN model, Nipun Nath et al. built a deep learning model based 

on You-Only-Look-Once v3 (YOLOv3) architecture [3]. The models prior to YOLO purposed 

classifiers to detect objects on the image. These models took a classifier for the object and 

evaluated it at various locations and scales in a test image [15]. On contrary, YOLO purposed a 

simple model structure: a single convolutional layer predicted several bounding boxes and their 
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class probabilities. The consequence of having a simple structure was a short training and testing 

time. The disadvantages of using YOLO include slightly less accurate, hard to detect objects in 

unfamiliar aspect ratios, and incorrect localizations [16]. By using YOLOv3, Nipun Nath et al. 

achieved 72.3% mAP on detecting PPE and it only takes 87.7 milliseconds for processing one test 

image on average [3]. 

Other than using a different object detection model, Nipun Nath et al also used three distinct 

approaches to find and locate PPE and construction stuff. Figure 15 illustrates what these three 

approaches are. Approach one used an object detection model to find the location of the worker, 

Hi-Vis vests, and hard hats first. Then this location information was input to a machine learning 

(ML) classifier to verify PPE compliance for each work. Approach two gave the semantic 

definition of the classes (W, WH, WV, and WHV) and one worker was assigned to one of the classes. 

Approach three was similar to approach one but involved additional training of the classifier 

models.  

 

Figure 15. Three distinct approaches used by Nipun Nath et al [3]. 

6. FUTURE WORKS 

Many future works can be done to this project on increasing the object detection model accuracy 

and shorten training and testing time. These improvements can be implemented through two 

channels, improved data quality, and object detection model improvement. 
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6.1 Improved data quality 

The dataset given by Downer in this project was considered inadequate in many aspects: the 

video quality was lower than expected; the length of the video was shorter than expected; the 

methods used to record the video were not ideal; the video was given to the project team quite 

late.  

Improved data quality can be easily achieved and will have a great impact on the outcome model. 

first of all, a better camera can be used to record the video, so the project team will receive video 

with better quality. The camera should be installed on top of a stationary pole, locates ideally less 

than 30 meters away from the working personnel, point at an angle which can monitor the whole 

site, and includes most of the cones or barriers in the image. The stationary monitoring camera 

can also record much longer than a man holding a camera, so the project team can acquire much 

more data to process.  

6.2 Object detection model improvement 

In this project, due to the time constraint, only one object detection model is trained and tested. 

There are many other models which have their unique advantages. Mask R-CNN can generate a 

segmentation mask for each object and achieves higher accuracy in predictions [17]. Cascade R-

CNN composes a sequence of detectors trained with increasing IoU and results in even higher 

accuracy than using Mask R-CNN [18]. These state of art models are also worth experiencing to 

obtain a better object detection model. 

7. CONCULSION 

In conclusion, this project trained a Faster R-CNN object detection model on a video dataset 

provided by Downer. 1323 images were extracted from the given videos, and then workers and 

PPE were annotated on the images using VGG IA. Image augmentation was used to enrich the 

dataset. Dataset was then split into train, validation, and test for a Faster R-CNN model to be 

trained. After 24 epochs of training, the loss converges, and the model achieves a 75.9% mAP at 

IoU 0.5 on the testing dataset. However, the model does have some flaws, such as cannot detect 

people not wearing an orange Hi-Vis vest and can only detect black and white hard helmets. 

Future works can be done to improve the outcome model, such as improving data quality and 

improving the object detection model. 
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APPENDIX A.  

 

 

Figure 1. Extracted frame 

 

Figure 2. Extracted frame 
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APPENDIX B.  

 

Figure 16. Frame extraction python notebook 

 


